Классификация живых систем
Рефераты >> Биология >> Классификация живых систем

Появление ценометабионтов сравнительно мало повлияло на общий ход биологической эволюции и не привело к каким-либо существенным переменам в биосфере. Если не считать развития колоний ценометабионтных рифообразующих кораллов, деятельность которых в Мировом океане, бесспорно, сделалась глобальным биогеохимическим фактором, то в остальном возникновение ценометабионтов, образно говоря, «осталось незамеченным»: лицо земной биоты и все важнейшие элементы ее интегрального жизненного баланса но-прежнему, как и в моно-метабионтную эру, всецело определяла и определяет совокупность монобионтов и метабионтов.

До настоящего времени в ряду циклического усложнения структурной агрегации живых систем третий — ценометабионтный — цикл является последним, в чем, видимо, находит отражение относительный характер адаптивной ценности агрегатного усложнения живых систем.

Адаптивная ценность процесса структурной агрегации живых систем

Адаптивная ценность процесса структурной агрегации живых систем достигает своего максимума при переходе от монобионтов к метабионтам, т. е. на метабионтном уровне, сочетающем высокую функционально-структурную пластичность организменной системы с относительной простотой и надежностью ее информационного обеспечения. В ходе дальнейшей агрегации происходят три процесса, ведущие к уменьшению ее адаптивной ценности.

Во-первых, резко увеличиваются линейные размеры конструкционных блоков* и вследствие этого столь же резко снижается их функционально-структурная пластичность, а следовательно, и их универсальность как конструкционного материала. Если клетка по своим функционально-структурным свойствам представляет собою действительно универсальный элементарный конструкционный блок и тем самым делает возможным по-истинне безграничное разнообразие многоклеточных организмов-метабион-тов, то строительный блок в виде недоразвитого многоклеточного мета-бионта со всеми содержащимися в нем тканями и зачатками органов, бесспорно, является значительно более громоздким, менее пластичным и узкоадаптированным, что с самого начала предопределяет его ограниченную пригодность как конструкционного материала. Понятно, что уже только, поэтому ценометабионты не смогли эволюционировать столь успешно, как метабионты.

Во-вторых, ухудшается информационная структура конструкционных блоков. Информационное обеспечение клетки, содержащей собственный геном, представляет собою оптимальную информационную структуру конструкционного блока, поскольку он изначально заключает в себе стандартную программу, которая может быть модифицирована, как мы видели, соответственно конкретной стратегии развития отдельных фрагментов метабионтного организма. Это обстоятельство создает клетке как конструкционному блоку второе важнейшее преимущество. Конструкционный блок в виде недоразвитого многоклеточного зачатка метабионта и в этом отношении, сравнительно с клеткой, бесспорно, проигрывает: его информационная структура оказывается несравненно менее гибкой, а главное — менее универсальной, чем в случае клетки. По своему макроструктурному уровню многоклеточный конструкционный блок значительно более, чем клетка, удален от молекулярного уровня материализации своей генетической программы развития, что, несомненно, осложняет информационное обеспечение такого многоклеточного блока и существенно ограничивает возможности адаптивной эволюции ценометабионтных организмов, по сравнению с метабионтными.

В-третьих, резко увеличиваются размеры организма, что при прочих равных условиях способствует, как мы видели, ослаблению пресса хищников и тем самым уменьшает стимул к дальнейшей структурной агрегации.

Ценометабионтные организменные системы как конструкционные блоки по тем же причинам пригодны еще менее, чем метабионтные, что и определило, судя по всему, отсутствие организмов еще более высокого структурного уровня, которые могли бы появиться в результате структурной агрегации ценометабионтов. Иначе говоря, те рассмотренные выше экологические стимулы, которые способствовали агрегации монобионтов, на уровне метабионтов значительно уменьшились, а на уровне ценометабионтов исчезли вовсе, в связи с чем прекратился и дальнейший процесс структурной агрегации живого, завершившийся появлением ценометабионтных систем.

При этом продолжается, однако, ничем не ограниченный во времени, грандиозный в своей многоплановости внутрициклический процесс адаптивной эволюции живых систем. В современных земных условиях процесс этот ограничен лишь тремя конкретными уровнями структурной агрегации организмов — монобионтным, метабионтным и ценометабионтным.

Автобионтные и анавтобионтные живые системы

Деление живых систем на автобионтные и анавтобионтные отражает два принципиально различных способа организации процессов метаболизма. Как процесс обмена веществом и энергией между организмом и окружающей его средой метаболизм может быть организован двумя существенно различными способами, в основе которых лежат принципиально различные экоморфологические предпосылки.

Первый способ — автобионтный — заключается в осуществлении всего комплекса обменных процессов собственными силами организма. Центральным, важнейшим видоспецифическим звеном этого метаболического комплекса являются репликация генома и синтез белка. Некоторые другие, функционально не менее важные, но менее видоспецифические процессы, прежде всего связанные с накоплением энергии в форме адено-зинтрифосфата, в отдельных случаях могут осуществляться на основе использования необходимой материальной базы другого организма. Это, в частности, можно видеть на примере бактерий из группы хламидий, которые, будучи облигатными внутриклеточными паразитами, приспособились к существованию в среде, богатой АТФ, и поэтому практически утратили способность к самостоятельному синтезу АТФ, за что их называют, «энергетическими паразитами». Тем не менее даже и в этом крайнем случае — при использовании экзогенных источников АТФ — репликация генетического материала и синтез белка осуществляются' собственными силами организма, в чем и состоит характернейшая черта рассматриваемого способа организации метаболических процессов. Ясно, что для этого организм должен располагать, соответственно, собственными ферментными и белоксинте-зирующими аппаратами. Из этого, в свою очередь, вытекают два следствия:

1) наличие указанных ферментных и синтезирующих аппаратов возможно только на основе определенного комплекса морфологических адаптации на уровне макромолекул и надмолекулярных агрегатов различной сложности, развитие которых делает организм в структурном отношении достаточно сложным;

2) при таком способе организации обменных процессов организм неизбежно должен иметь многоплановые прямые связи с внешней средой, в том числе трофические, обеспечивая как поступление вещества и энергии извне, так и удаление возникающих продуктов обмена в окружающее пространство.

Этот способ организации процессов метаболизма свойствен всем клеточным организмам, т. е. все клеточные организмы — а в т о б и о н т ы. Кроме того, автобионтами были, несомненно, и все первичные доклеточные организмы, поскольку они могли возникнуть не иначе как живые системы, самостоятельные в трофоэнерге-тическом отношении. В этой связи важно еще раз подчеркнуть, что понятие автобионтности связано не с клеточной структурой организма как таковой, а с определенным способом организации метаболических процессов, хотя в современной земной биоте автобионты представлены только клеточными организмами.


Страница: