Управление процентным риском портфеля ГКО-ОФЗ в посткризисный период
Рефераты >> Финансы >> Управление процентным риском портфеля ГКО-ОФЗ в посткризисный период

Таблица 2.3.4.

Булевы переменные, выражающие специфику различных инвесторов.

S

равна 1, если срок вложений инвестора – сверхкраткосрочный, и 0 – в противоположном случае

L

равна 1, если срок вложений инвестора – среднесрочный, и 0 – в противоположном случае

F

равна 1, если инвестор прогнозирует падение процентных ставок, и 0 – в противоположном случае

G

равна 1, если инвестор прогнозирует рост процентных ставок, и 0 – в противоположном случае

N

равна 1, если инвестор характеризуется низкой степенью неприятия процентного риска (w=0.5), и 0 – в противоположном случае

A

равна 1, если инвестор характеризуется высокой степенью неприятия процентного риска (w=2), и 0 ­– в противоположном случае

В результате было получено следующее уравнение зависимости между дюрацией оптимального портфеля и фиктивными переменными, отражающими индивидуальные особенности инвестора:

DFW = 0.855 – 0.049 S + 0.069 L + 0.102 F – 0.342 G + 0.166 N – 0.125 A; R2 = 0.868. (2.3.27)

(t) (16.144) (-0.993) (1.417) (2.079) (-6.968) (3.377) (-2.558)

Все коэффициенты регрессии имеют ожидаемые знаки (bS<0, bL>0, bF>0, bG<0, bN>0, bA<0). При этом четыре из шести коэффициентов статистически значимы на 6% уровне. Наибольшие по абсолютной величине значения t-статистик зафиксированы у коэффициентов при переменных, отражающих характер прогнозов инвестора и его стремление к устранению процентного риска, а наименьшие – у коэффициентов при переменных, измеряющих продолжительность периода вложений.

Полученные результаты позволили автору прийти к заключению, что важнейшим фактором, определяющим размер дюрации оптимального портфеля при осуществлении краткосрочных рисковых вложений, является характер прогнозов инвестора. Большое значение играет и степень неприятия процентного риска. Чем сильнее степень уверенности инвестора в падении уровня процентных ставок в ближайшем будущем, чем больше его готовность рисковать и чем более продолжительным является его период вложений, тем больше дюрация оптимального портфеля.

§2.4. Краткосрочное прогнозирование конъюнктуры рынка ГКО-ОФЗ.

Динамика процентных ставок определяется взаимодействием целого ряда факторов: денежно-кредитной и налогово-бюджетной политики государства, состояния ликвидности банковской системы, тенденций развития инфляционных процессов, спроса на кредитные ресурсы со стороны реального сектора экономики, конъюнктуры смежных секторов финансового рынка и степени их интегрированности с сектором долговых финансовых инструментов, а также зависит от потока информационных сообщений, отражающих перспективы изменения состояния этих факторов, которые поступают рыночным агентам и определяют характер их последующих действий. Одни из факторов определяют долгосрочные тенденции изменения уровня процентных ставок, другие вызывают краткосрочные колебания, затухающие через несколько дней после первичной реакции рынка.

Автор полагает, что исследуя реакцию процентных ставок на изменения значений макроэкономических и финансовых показателей, отражающие перемены в состоянии экономики страны и конъюнктуре финансового рынка, можно построить модель прогнозирования, способную предсказывать направление движения процентных ставок более, чем в 50% случаев. Конечно, намерение добиться чрезвычайно высокой точности прогнозов является утопией. Набор доступных индикаторов, сколь бы широким он ни был, не может дать полностью адекватную картину комплекса сил, определяющих траекторию движения процентных ставок. Кроме того, эффективные рынки оперативно реагируют на вновь поступающую информацию, поэтому лаговые значения доступных индикаторов могут объяснить лишь часть вариации будущих изменений прогнозируемого показателя. В этой связи любая, даже самая эффективная модель прогнозирования обречена на ошибки; она не может гарантировать тесной корреляции между предсказанными и фактическими значениями объясняемой случайной переменной.

Однако попытка построить модель, верно определяющую направление движения рынка немногим более, чем в 50% случаев, и обеспечивающую небольшую положительную корреляцию между прогнозируемыми и фактическими изменениями, при определенных обстоятельствах может увенчаться успехом. По мнению автора, степень эффективности прогнозирования зависит от трех основных факторов: степени устойчивости тенденций, определявших динамику процентных ставок в недавнем прошлом, степени эффективности рынка, или скорости его адаптации к новым состояниям факторов среды, а также качества используемой модели. Два первых фактора находятся вне рамок контроля исследователя; они задают условия, в которых решается задача. Однако третий фактор поддается контролю: исследователь может выбирать различные концептуальные подходы к построению модели, вводить в рамки анализа или исключать из них различные переменные, сужать или расширять диапазон исторических данных, на основе которых оцениваются параметры модели.

В настоящей работе осуществляется проверка гипотезы о существовании сложной нелинейной зависимости между прошлыми значениями индикаторов российского финансового рынка и последующими изменениями спот-ставки рынка ГКО–ОФЗ для срока один год, отвечающей за часть вариации этих изменений. В качестве инструмента идентификации данной зависимости диссертантом используются нейронные сети – гибкие непараметрические модели, нашедшие широкое применение в различных финансовых приложениях.

Выбор нейронных сетей в качестве инструментального средства решения задачи прогнозирования динамики процентных ставок обусловлен их уникальной способностью к аппроксимации нелинейных зависимостей. Согласно следствию из теоремы Колмогорова–Арнольда, доказанному Хехт-Нильсеном, произвольная непрерывная функция нескольких переменных может быть аппроксимирована нейронной сетью с любой наперед заданной степенью точности.[80] Важным аргументом, послужившим основанием выбора нейронных сетей в качестве инструмента моделирования, стали успехи целого ряда исследователей в решении различных проблем анализа финансовых рынков на основе разработки нейросетевых приложений.

Обработка информации в нейронной сети осуществляется при помощи особых структурных элементов – искусственных нейронов. В нейрон поступает набор входных сигналов Xi. Каждый входной сигнал корректируется на соответствующий ему вес Wi. Потенциал нейрона рассчитывается по формуле

V = W0 + S Xi ´ Wi. (2.4.1)


Страница: