Управление процентным риском портфеля ГКО-ОФЗ в посткризисный период
Колебания временных премий подвергают инвесторов процентному риску, но вместе с тем открывают перед ними спекулятивные возможности. Осуществляя краткосрочные операции с долгосрочными облигациями, можно добиться существенного приращения доходности вложений, используя готовность большинства участников рынка ГКО–ОФЗ вознаграждать спекулянтов за отказ от доминирующих временных предпочтений.
Однако для инвесторов, стремящихся к полному устранению процентного риска, колебания временных премий представляют серьезную проблему. Перед ними встает задача иммунизации риска смещения временных премий, то есть поиска такого варианта формирования структуры портфеля, при котором стоимость портфеля на конец периода вложений не может упасть вследствие изменения временных предпочтений рыночных агентов. Эта задача решается при использовании модели иммунизации от смещения временных премий, разработанной диссертантом.
Выводя условия иммунизации от смещения временных премий и предполагая, что период вложений m фиксирован, удобно представить временную премию в качестве функции одного аргумента, определив новую переменную
(2.2.9)
Поскольку
, (2.2.10)
, (2.2.11)
, (2.2.12)
где s(t,t) – спот-ставка для срока вложений t, установившаяся в момент времени t, s|(t,t) – производная спот-ставки по сроку вложений t.
Рассмотрим ситуацию, при которой значения временных премий смещаются на одну и ту же величину l. Тогда рыночная стоимость портфеля на дату окончания периода вложений окажется равной
. (2.2.13)
Портфель иммунизирован от смещения временных премий, если при любых значениях параметра сдвига l выполняется неравенство
FV(l) ³ FV(0). (2.2.14)
Неравенство (2.2.14) выполняется на всей области определения функции FV(l), если в точке l=0 достигается глобальный минимум данной функции. Для этого достаточно выполнения двух условий:
1) ; (2.2.15)
2) . (2.2.16)
Дифференцируя функцию FV(l), имеем
, (2.2.17)
. (2.2.18)
Поскольку многочлен, стоящий в правой части выражения (2.2.18), не содержит отрицательных членов, второе условие выполняется для любого портфеля. Первое условие выполняется лишь для подмножества портфелей, структура которых удовлетворяет ограничению вида
. (2.2.19)
Это уравнение можно упростить до
, (2.2.20)
где L – чувствительность будущей стоимости портфеля к смещению временных премий, которую можно выразить через чувствительности отдельных облигаций, входящих в состав портфеля, по формуле
, (2.2.21)
где qj – количество облигаций выпуска j, включенных в состав портфеля, СFji – денежный платеж по облигации выпуска j через период времени ti, Lj – показатель чувствительности облигации выпуска j к смещению временных премий.
Чем сильнее распределены денежные поступления от иммунизированного портфеля и чем сильнее облигации, включенные в его состав, реагируют на смещение временных премий, тем более опасными последствиями чреват непараллельный сдвиг функции pm(t). По мнению диссертанта, степень рассеяния денежных поступлений и силу реакции на смещения временных премий можно измерять при помощи квадрата показателя чувствительности L2. Поэтому инвестору, стремящемуся к полному устранению процентного риска, целесообразно следовать стратегии минимизации показателя L2 своего портфеля, выступающего аналогом показателя M2 критерия Фонга–Васичека. Тогда задача иммунизации от смещения временных премий сводится к задаче оптимизации
, (2.2.22)
, (2.2.23)
, (2.2.24)
, (2.2.25)
где Pj – цена облигации выпуска j, MV – объем финансовых ресурсов, выделенных инвестором на формирование портфеля облигаций.
Если рынок описывается теорией временных предпочтений, иммунизируемая доходность вложений не равна текущей спот-ставке. В самом деле, при сохранении временных премий на уровне средних значений стоимость портфеля на конец периода вложений составит
. (2.2.26)
Отсюда минимальный уровень доходности вложений, гарантируемый иммунизированным портфелем, равен
. (2.2.27)
Уравнение (2.2.27) свидетельствует, что классическая стратегия иммунизации портфеля от смещения форвардных ставок и стратегия иммунизации портфеля от смещения временных премий, предложенная автором, преследуют достижение различных целей. В рамках модели иммунизации от смещения форвардных ставок считается, что инвестор всегда может гарантировать себе доходность вложений, равную текущей спот-ставке для заданного срока. В рамках модели иммунизации от смещения временных премий, разработанной диссертантом, такая возможность представляет собой лишь частный случай. В общем случае стратегия иммунизации обеспечивает инвестору минимальный уровень доходности, заданный условием (2.2.27), который может быть больше или меньше соответствующей спот-ставки.
Поскольку целевые уровни доходности в моделях, защищающих от смещения форвардных ставок и временных премий, различаются между собой, тестирование их эффективности должно опираться на сравнение доходностей иммунизированных портфелей с различными эталонами. Для портфеля, иммунизированного от смещения форвардных ставок, роль эталона играет текущая спот-ставка, а для портфеля, иммунизированного от смещения временных премий, эталонная доходность вложений определяется уравнением (2.2.27).
Для того, чтобы произвести сравнение возможностей моделей иммунизации от смещения форвардных ставок и временных премий, по данным торгов на рынке ГКО–ОФЗ, проводимых по средам в течение периода с 6 января по 27 декабря 2000 г., автором были рассчитаны структуры портфелей, иммунизирующих процентный риск для сроков вложений продолжительностью 8 и 12 недель.[69] Функция средних значений временных премий описывалась при помощи выборки, включающей значения в 20 различных точках, рассчитанные по данным за последние шесть месяцев. Аналитическое задание функции осуществлялось путем аппроксимации имеющихся наблюдений полиномом шестой степени. По мере накопления новых данных производилась переоценка параметров функции с периодичностью 1 раз в месяц.