Анализ сополимеризации индена с малеиновым ангидридом
В зависимости от природы мономеров и растворителя кислоты Льюиса могут образовывать донорно-акцепторые комплексы нескольких типов. В основе существующей классификации лежит тип орбиталей, участвующих в образовании межмолекулярных связей [10]. Соединения - доноры электронов подразделяются на три группы: n, s и p в зависимости от типа высшей из занятых орбиталей (неподелённая электронная пара, s-связь и пара p-электронов соответственно). Координационно-ненасыщенные соединения металлов участвуют в комплексах за счёт вакантных орбиталей (V) атома металла. Наибольший интерес представляют следующие комплексы мономеров с кислотами Льюиса: nV-комплекс, в котором в качестве донора электронов выступает гетероатом с неподелённой парой заместителя мономера или радикала роста, и nVp-тройной комплекс, в котором акцептором является двойной комплекс nV, а донором – мономер или растворитель электронодонорного характера. Хотя те и другие комплексы по своей природе являются донорно-акцепторыми (ДА), в литературе это название в основном применяется к комплексам второго типа, а nV-комплексы по сложившейся терминологии называются координационными.
Комплексообразование между мономерами и кислотами Льюиса в координационных nV-комплексах надёжно установлено по данным ИК-, УФ- и ЯМР-спектроскопии. В ИК спектрах комплексов метилметакрилата и (мет)акрилонитрила с галогенидами металлов наблюдаются существенные сдвиги полос поглощения [11,12], соответствующих валентным колебаниям nС=О и nС≡N величиной от 20 до 155 см-1 и от 25 до 50 см-1. Частота валентных колебаний С=С связей изменяется незначительно, от 2 до 5 см-1. На основе этих данных сделан вывод о том, что комплексообразование указанных мономеров идёт преимущественно по функциональным группам заместителей и что роль двойной связи в этом процессе незначительна. Об этом свидетельствует и тот факт, что сдвиги полосы nС=О ММА и его предельного аналога – этилацетата при их взаимодействии с кислотами Льюиса близки. Весьма полезная информация получена также при анализе изменений частот деформационных колебаний δСН (в пределах от -12 до +22ºсм-1) и скелетных колебаний пиридинового кольца (21-30ºсм-1) в комплексах винилпиридинов с галогенидами цинка [13]. Природа выявленных эффектов была интерпретирована в предположении, что ион металла комплексообразователя участвует в системе сопряжения мономера и смещает на себя его электронную плотность.
Для оценки изменения степени сопряжения двойной связи акриловых мономеров при комплексообразовании было использовано смещение полосы поглощения неплоских веерных колебаний С-Н связей метиленового фрагмента >C=СН2. Согласно [14], увеличение сопряжения двойной связи мономера приводит к повышению частоты , а усиление полярности - к её уменьшению. Следовательно, экспериментально наблюдаемый факт увеличения на 12-17ºсм-1 частоты колебаний (мет)акриловых мономеров (бутилакрилата, акрилонитрила, метилметакрилата) в комплексах с с хлоридами цинка и олова свидетельствует об увеличении степени сопряжения двойной связи мономера.
Влияние комплексообразования на степень сопряжения двойной связи было доказано также методом УФ-спектроскопии [10]. Сопряжение в мономере косвенно может быть оценено по значению параметра Q схемы Q – e Алфрея – Прайса. Была установлена [13] линейная кореляция между lg Q и λπ-π*- полосой поглощения двойной связи мономера в УФ-спектре. Тазуке и Окамура [13] нашли, что при образовании комплекса с кислотами Льюиса наблюдается красное смещение полосы поглощения двойной связи. Этот факт указывает на увеличение резонансной стабилизации мономера в комплексе за счёт дополнительного сопряжения π-электронной системы мономера с атомом металла кислоты Льюиса. Уменьшение частоты поглощения, вызванное комплексообразованием, в некоторых случаях достигает 700 – 1500 см-1, что отвечает возрастанию параметра Q комплексо-связанных мономеров в 1,5 – 2 раза [15].
Об изменении полярности двойной связи мономеров при комплексообразовании свидетельствуют также данные ПМР спектров комплексов акриловых мономеров, например ММА, с хлоридами олова, алюминия и BF3, в которых химические сдвиги протонов мономеров смещены в область слабого поля по сравнению со свободными мономерами на 0,02-0,60 м.д. [11].
2 Полимеризация индена и кумарона
Интерес к полимеризации индена и кумарона был первоначально вызван тем, что они являются основными ненасыщенными компонентами сырого бензола и каменноугольного масла, способными к смолообразованию. До настоящего времени сырьем для производства инден-кумароновых смол остается тяжелый бензол, называемый также по преобладающим компонентам инден-кумароновой фракцией, хотя большую ценность представляет также и ксилольно-тяжелая фракция коксо-химического производства. Эти фракции содержат 50-70 и 35-40 % непредельных соединений и обе пригодны для получения кондиционных инден-кумароновых смол. Следует отметить, что в обеих указанных фракциях третьим по объему содержания ненасыщенным компонентом является стирол.
Наибольший интерес из указанных выше продуктов коксо-химического производства представляет инден, концентрация которого выше, чем стирола и кумарона. Инден легко бромируется, алкилируется, цианэтилируется. Однако основной областью его использования является процесс получения инден-кумароновых смол. Протекание этого процесса определяется ходом полимеризации и сополимеризации индивидуальных смолообразующих компонентов сырья. Не случайно поэтому большое число исследований было посвящено изучению химизма и условий полимеризации соединений инденового и кумаронового ряда. Начало им было положено работами Кремера и Шпилькера, опубликованными в 1890 г. [14, 16], а затем в разное время этот вопрос изучали Штермер, Штоббе и Фербер, Уитби и Кац, Штаудингер [14, 16], в 60-е годы ХХ в. обстоятельные исследования были выполнены Марешалем и др [15,16,17,18]. Уже в первых работах было установлено, что полимеризация индена может протекать под действием света, тепла, давления и главным образом под влиянием различных катализаторов.
2.1 Основные закономерности полимеризации индена и кумарона
Полимеризация индена протекает под действием солнечного света, однако чрезвычайно медленно: при выдержке на свету в течение года удалось получить лишь небольшой выход полимера, содержащего от 8 до 16 молекул исходного мономера. Довольно подробно изучена, например, фотодимеризация индена [16, 19]. Показано, что реакция протекает как через синглетное, так и через триплетное состояние индена. При несенсибилизированной фотодимеризации 80 % димера образуется через триплетный инден.
Более интенсивно протекает термическая полимеризация. Уже при обычной температуре происходит автополимеризация индена, скорость которой быстро возрастает с повышением температуры. Однако даже при температуре ~200ºС для обеспечения полноты реакции полимеризации требуется длительное время [14, 16]. Наряду с полимеризацией при нагревании индена протекает реакция автовосстановления, в результате которой происходит образование трускена (С27Н18) и гидриндена (С9Н10), а если нагревать инден в присутствии воздуха, то происходит также его автоокисление. При повышении температуры молекулярная масса продукта уменьшается, например, от 886 до 676 при 178ºС и 200ºС. Как правило, молекулярная масса продукта реакции при термополимеризации не превышает 1000.