Самостоятельная работа как средство обучения решению уравнений в 5-9 классах
Рефераты >> Педагогика >> Самостоятельная работа как средство обучения решению уравнений в 5-9 классах

- Какие преобразования можно сделать, если уравнение имеет вид: х2+5х-7=0.

VII. Задание на дом.

-Откройте дневники. Запишите задание на дом? № 627 (а) и №625(б)

-Посмотрите. Кому что не понятно ?

4 Очень важны так называемые повторительные (обзорные или тематические) работы. Перед изучением новой темы учитель должен знать, подготовлены ли школьники, .есть ли у них необходимые знания, какие

пробелы смогут затруднить изучение нового материала.

Тема:

Решение задач.

   

Цель:

1. Проверить знания детей, их умение решать задачи при помощи рациональных уравнений; Познакомить с задачами на работу.

2. Развивать вычислительные навыки, математическую и речь, логическое мышление.

3. Воспитывать интерес к предмету, трудолюбие, активность, самостоятельность, дисциплинированность.

Оборудование:

Учебник, «Алгебра - 8», 1994 г.

План урока.

I. Организационный момент (2 мин.)

II. Сообщение темы и цели (3 мин.)

III. Закрепление изученного (15 мин.)

IV. Изучение нового материала (20 мин.)

V. Подведение итогов (3 мин.)

VI. Задание на дом (2 мин.)

Ход урока

I. Организационный момент

II. Сообщение темы и цели

-Мы продолжаем работу по теме «Решение задач»

Сейчас напишем самостоятельную работу, решим задачи на движение. А после самостоятельной работы я объясню, как решать задачи на

III. Закрепление изученного материала

Самостоятельная работа.

В – I – на «3» – с. 134 – 630

В – II на «4»

Моторная лодка прошла по течению реки 6 км, а затем по озеру 10 км. затратив на весь путь 1 ч. Найдите с какой скоростью лодка ехала по озеру, если скорость течения 3 км/ч.

В – III на «5»

Моторная лодка прошла 54 км. по течению и вернулась обратно затратив на весь путь 7 ч. 30 мин. Найдите скорость лодки в стоячей воде, если скорость течения равна 3 км/ч.

В-I

n S

Предполагаем х км./ч. t/x 18 км.

Или (х+1/2)км./ч. 18/(х+(1/2)), на ½ ч. быстрее

Пусть х км./ч. – скорость, с которой предполагает идти турист, тогда (х+1/2) км./ч. скорость, с которой они шли. Зная, что туристы должны были пройти 18 км., и что они прошли намеченный путь на ½ ч. быстрее, составим и решим уравнение:

0.3=2х(х+1/2)

18*2(х+1/2)-18*2х=1х(х+1/2)

36(х+1/2)-36х=х(х+1/2)

36+18-36=х2+1/2х

х2+1/2х-18=0

Д=в2-4ас=1/4-4*(-18)=1/4+72=72*1/4=289/4

- посторонний корень.

Проверка: если х=4, то 2*4(4+1/2)=8*4(1/2)=32/2=16

Ответ: туристы предполагали идти со скоростью 4 км/ч.

В-II

n t S

по течению (х+3) км./ч. 6 км.

1ч.

озеро х км./ч. 10 км.

река 3 км/ч.

Пусть скорость лодки собственная х км/ч., тогда скорость лодки по течению (х+3) км/ч. Зная, что по течению реки лодка прошла 6 км., а по озеру 10 км. затратив на весь путь 1час, составим и решим уравнение:

0.3=х(х+3)

6х+10(х+3)=х(х+3)

6х+10(х+3)=х(х+3)

6х+10х+30=х2+3х

х2+3х-16х-30=0

х2-13х-30=0

Д=в2-4ас=169-4*(-30)=169+120=289>0,2 к.

- посторонний корень.

Проверка: если х=15, то 15(15+3)=15*18=270.

Ответ: лодка ехала по озеру со скоростью 15 км/ч.

В-III

n t S

моторная лодка х км/ч.

по течению (х+3) км./ч. 54 км.

7ч. 30 мин.

против течения (х-3) км./ч. 54 км.

течение реки 3 км/ч.

Пусть х км./ч. скорость лодки, тогда (х+3) км/ч. скорость лодки по течению и (х-3) км/ч. скорость лодки против течения реки. Зная что лодка прошла 54 км. по течению и вернулась обратно, затратив на весь путь 7ч 30 мин., составим решим уравнение:

7ч. 30 мин.=7,5 часа

0,3=(х+3)(х-3)

54(х-3)+54(х+3)=(7,5х+22,5)(х-3)

54х-162+54х+162=7,5-22,5х+22,5х-67,5

7,5х2-108х-67,5=0

1,5х2-21,6х-13,5

Д=в2-4ас=(-21,6)2-4*1,5*(-13,5)=466,56+81=547,56>0

Проверка: если х=15, то (15+3)(15-3)=18*12=216

Ответ: скорость моторной лодки в стоячей воде 15 км/ч.

IV Изучение нового материала.

-Как вы понимаете выражение – задачи на работу?

-Запомните: при решении задач на работу мы будем использовать понятия: работа, время и производительность:

-Как вы понимаете, что такое производительность? (количество работы выполненное за единицу времени)

-Работу мы всегда будем обозначать за единицу – 1.

-Как мы будем находить производительность?

-Как найдем время?

-Давайте разберем задачу

с. 132, 614

производительность время работа

1I (х+5)ч.

II х ч.

Пусть х ч. время работы второго штукатура, тогда время первого штукатура (х+5)ч. Зная что работая вместе они выполняют работу за 6 ч., составим и решим уравнение:

0.3=6х(х+5)

6х+6(х+5)=х(х+5)

6х+6х+30=х+5х

х2+5х-12х-30=0

х2-7х-30=0 по т. Виета

х1+х2=7 х1=10

х1х2=-30 х2=-3 – посторонний корень

Проверка: если х=10, 6*10(10+3)=60*13=780 10+5=15(ч)

Ответ: время работы первого штукатура 15 часов, а второго 10 часов.

-У кого есть вопросы?

-Кому что не понятно?

V Подведение итогов

-Итак мы разобрали как решаются задачи на работу.


Страница: