Самостоятельная работа как средство обучения решению уравнений в 5-9 классахРефераты >> Педагогика >> Самостоятельная работа как средство обучения решению уравнений в 5-9 классах
В [159][3] также вводится понятие уравнения первой степени с одним неизвестным и объясняется алгоритм его решения. В отличие от [20] здесь дано явное определение: «Алгебраическое уравнение от одного неизвестного называется уравнением первой степени, если обе его части являются многочленами первой степени относительно неизвестного». По поводу этого определения следует сказать, что по смыслу понятия степени многочлена, введенного в этом учебнике, оно относится к конкретной записи многочлена без приведения подобных членов; например, многочлен 2х+ 1 —(2х—3) — первой степени.
В [129][4] в системе изучения присутствуют оба понятия: и линейного уравнения с одним неизвестным, и уравнения первой степени. Первое из них описывает широкий класс уравнений (левая и правая части уравнения — нуль или многочлены не выше первой степени), а второе—более узкий (уравнение вида kx+b=0, k¹0).
Выделение подкласса уравнений первой степени в классе линейных уравнений в принципе может облегчить изложение этого класса. В частности, введение двух терминов (линейное уравнение, уравнение первой степени) позволяет четче описать сам процесс решения. Однако при этом возникает необходимость в усвоении двух, а не одного термина. Точно так же указание явного определения изучаемого понятия по сравнению с описанием имеет преимущество большей четкости, но предъявляет более высокие требования к развитию логического мышления учащихся.
Охарактеризованные четыре варианта изложения теории уравнений, имеющих вид ax + b == сх + d, свидетельствуют о том, что эта теория допускает несколько различных по стилю и методике изучения развертывании. Можно (как это сделано в первом и четвертом случаях) сконцентрировать внимание на выделении более узкого класса, играющего роль «канонического вида», к которому приводятся данные уравнения; но можно (как во втором и третьем случаях) обойтись и без этого, а сразу изучать способы решения уравнений общего класса, используя изученные типы преобразований уравнений. Точно так же можно с разной степенью выявленности описывать вводимые термины: четким определением или же посредством описания.
Несмотря на наличие таких разных подходов к введению первого класса уравнений, значительная часть методики его изучения одинакова при любом из них. Это объясняется прежде всего тем, что основной целью изучения в данном случае всегда является освоение правил решения уравнений данного класса, образующих сравнительно компактную систему и относящихся исключительно к преобразованиям буквенно-числовых выражений. В последнем отношении рассматриваемый класс сильно отличается от большинства других классов, в изучении которых определенную, а иногда значительную роль играют логические, графические, вычислительные компоненты.
При изучении этого класса уравнений учащиеся подходят к осознанию того, что уравнения, с первого взгляда мало отличные друг от друга, могут резко различаться по количеству корней. Это ответственный момент, один из самых существенных в изучении всего курса алгебры, поскольку при этом учащиеся впервые сталкиваются с необходимостью теоретического осмысления именно класса уравнений, а не каждого уравнения в отдельности.
Конкретные способы изложения материала, относящегося к исследованию, могут быть различными. Зависят они в первую очередь от стиля выделения этого класса. Если он выделяется явным определением, то и результаты исследования формулируются в виде четкой системы условий, при выполнении которых имеет место один из трех возможных случаев. Если же этот класс уравнений выделяется посредством описания, то реализация каждого из этих случаев показывается на примерах, но общего обоснования не дается.
Отметим еще, что рассматриваемый класс является единственным, для которого в современной методике есть разные подходы к проведению исследований. Для каждого из остальных классов уравнений, неравенств, систем исследование проводится, по существу, одинаково при любом построении курса алгебры. Именно те классы уравнений, неравенств, систем, алгоритмы решения которых заучиваются при усвоении материала, исследуются аналогично первому способу; для тех классов, где результирующих формул для получения ответа не указывается, используется второй способ.
В итоге тематического изучения первого класса уравнений учащиеся должны овладеть: алгоритмом решения уравнений данного класса; умением применять результаты исследования уравнений данного класса; основными понятиями общей теории уравнении;
применением уравнений данного класса к решению текстовых задач.
2. Системы двух линейных уравнений с двумя неизвестными.
С помощью линейных уравнений с одним неизвестным можно решать многочисленные .задачи, в которых либо имеется только одно неизвестное, либо среди неизвестных можно указать одно «ведущее», через которое выражаются остальные. Но многие ситуации описываются несколькими параметрами, вообще говоря, равноправными друг другу; эти ситуации требуют разработки новых алгебраических средств их изучения. В качестве одного из таких средств в курсе алгебры выступает класс систем двух линейных уравнений, с двумя неизвестными.
Приведенное рассуждение может быть положено в основу методики изучения указанного класса. Такой способ введения подчеркивает прикладную значимость уравнений с двумя неизвестными, однако изучение этого класса требует введения обширной совокупности формальных понятий и методов, поэтому отмеченная схема изложения, в которой проводится содержательная мотивировка данного класса, не единственный способ изложения этого материала.
Изложение темы можно начать с рассмотрения понятий, входящих в качестве компонентов в понятие системы линейных уравнений с двумя неизвестными; их соединение формирует представление о данном классе. Эти компоненты таковы: представление о конъюнкции логических условий, которое формализуется в понятии системы уравнений; представление о наличии в составе логического условия двух переменных, представление о линейном уравнении с двумя неизвестными, непосредственно связанное с данным классом систем.
Рассмотрим эти компоненты подробнее. Полезность изучения понятия уравнения с двумя неизвестными перед введением понятия о системе уравнений заключается в том, что при этом могут быть рассмотрены два важных в дальнейшем вопроса: выражение одного из неизвестных через другое (это преобразование используется при изучении метода подстановки) и введение понятия графика уравнения с двумя неизвестными.
Существенно новым представлением, которое получают учащиеся при изучении этой темы, является представление о том, что решением уравнения с двумя неизвестными служит не число, а упорядоченная пара чисел. Вторым представлением, резко расширяющим кругозор учащихся, служит то, что множество решений уравнения с двумя неизвестными, как правило, бесконечно и его изображение на координатной плоскости — некоторая линия.
Изучение этой темы может рассматриваться как определенный мостик, связывающий понятие функции и понятие уравнения с двумя неизвестными: с одной стороны, уравнение с двумя неизвестными, в котором одно из них выражено через другое, по виду формулы совпадает с функцией; с другой — оказывается, что один и тот же геометрический образ является и графиком уравнения, и графиком функции. Эти первые представления в дальнейшем подвергаются неоднократному уточнению и переосмысливанию, но уже и в таком несовершенном виде они с успехом используются при изучении систем уравнений.