Обработка результатов экспериментов и наблюденийРефераты >> Математика >> Обработка результатов экспериментов и наблюдений
F (+ ¥) = p (Х < ¥) = 1;
т.е. F (х) изменяется в диапазоне от 0 до 1.
Закон распределения дискретной случайной величины может быть задан таблицей или ступенчатой функцией (рис. 4)
Рис. 4. Интегральный закон распределения
дискретной случайной величины
Для дискретной случайной величины
F (x) = P (X < x) = P (-¥ < X < x) = ,
где суммирование распространяется на хi < х. В промежутке между двумя последовательными значениями Х функция F (х) постоянна. При переходе аргумента х через значение хi F (х) скачком возрастает на величину p (Х = хi).
Рассмотрим p (х1 £ Х < х2). Если х2 > х1, то очевидно, что
p (Х < х2) = p (Х < х1) + p (х1 £ Х < х2).
Тогда
p (х1 £ Х < х2) = p (Х < х2) - p (Х < х1) = F (х2) - F (х1),
т.е. вероятность попадания случайной величины в интервал [х1; х2) равен разности значений интегральной функции граничных точек.
Последнее условие можно использовать для нахождения вероятности p (Х = х1) для непрерывной случайной величины. Для этого рассмотрим предел
p (X = x1) = ,
т.е. если закон распределения случайной величины есть функция непрерывная, то вероятность того, что случайная величина примет заранее заданное значение, равна нулю.
Здесь видно различие между дискретными и непрерывными случайными величинами. Для дискретных случайных величин, для каждого значения случайной величины существует своя вероятность. И для него справедливо утверждение: событие, вероятность которого равна нулю, невозможно. Для непрерывной случайной величины это утверждение неверно. Как показано, вероятность того, что Х = х1 ( где х1- заранее выбранное число) равна нулю, это событие не является невозможным.
Рассмотрим непрерывную случайную величину Х, интегральный закон которой предполагается непрерывным и дифференцируемым. Функцию
¦ (х) = F¢ (х)
называют дифференциальным законом распределения или плотностью вероятности случайной величины Х. Из определения производной можно записать
¦ (x) = F¢ (x) = ,
т.е. плотность вероятности случайной величины Х в точке х равна пределу отношения вероятности попадания величины Х в интервал (х; х + Dх) к Dх, когда Dх стремится к нулю.
Используя понятия интегральной функции распределения и определенного интеграла можно записать
¦ (x) = F¢ (x) или F (x) = p (x1 < X < x2) = .
Это соотношение имеет простое геометрическое толкование (рис. 5).
Если определяет заштрихованную область в соответствующих пределах, то
p (х < Х < х + Dх) » ¦ (х) Dх.
Рис. 5. Геометрический смысл дифференциальной функции распределения
Из свойств интегрального распределения следует
.
Зная дифференциальный закон распределения можно определить интегральный закон распределения
F (x) = .
2.2. Числовые характеристики случайных величин, заданных своими распределениями
Основными характеристиками случайной величины, заданной своими распределениями, является математическое ожидание ( или среднее значение ) и дисперсия.
Математическое ожидание случайной величины является центром ее распределения. Дисперсия характеризует отклонение случайной величины от ее среднего значения.
Если Х дискретная случайная величина, значения хi которой принимают с вероятностью pi, так, что , то математическое ожидание М (Х) случайной величины Х определяется равенством
M (X) = ,
т.е. суммой произведений всех ее возможных значений на соответствующие вероятности.
Математическим ожиданием непрерывной случайной величины является аналог его дискретного выражения
M (X) = .
Действительно, все значения в интервале (х; х + Dх) можно считать примерно равными х, а вероятность таких значений равна ¦ (х) dx (см. ранее). Поэтому значения хi дискретного распределения заменяются х, а вероятности pi - на ¦ (х) dx, а сумма заменяется интегралом.
Дисперсией или рассеянием случайной величины Х называется математическое ожидание квадрата разности случайной величины и ее математического ожидания.
D (Х) = М [Х - М (Х)]2 = М (Х - х)2 = s2 (х)
Если случайная величина Х дискретна и принимает значения хi с вероятностями pi, то случайная величина (Х - х)2 принимает значения (хi - х)2 с вероятностями Рi. Поэтому для дискретной случайной величины имеем
D (X) = .
Аналогично для непрерывной случайной величины получаем
D (X) = .
Чем меньше величина дисперсии, тем лучше значения случайной величины характеризуются ее математическим ожиданием.
2.3. Основные дискретные и непрерывные законы распределения
Как отмечалось ранее, очень часто случайная величина распределена по нормальному закону. Но существуют и другие распределения, имеющие практическое значение. Рассмотрим некоторые из них по условиям возникновения и основным параметрам их характеризующим.
1. Равномерное распределение вероятностей.
Пусть плотность вероятности А равна нулю всюду, кроме интервала (a; b), на котором она постоянна (рис. 6). Тогда можно записать
p (a < X < b) = A = .
Рис. 6. Дифференциальный и интегральный законы
равномерного распределения
Тогда дифференциальный закон равномерного распределения определяется
¦ (x) =
Интегральный закон распределения
F (x) = .
При х ³ b имеем
F (x) =
Таким образом интегральный закон равномерного распределения задается (рис. 6)
F (x) =
Основные характеристики распределения
М (X) = ;
D(X) =