Обработка результатов экспериментов и наблюдений
Рефераты >> Математика >> Обработка результатов экспериментов и наблюдений

Х = а при n ® ¥,

т.е. при бесконечном числе измерений истинное значение измеряемой величины равно среднеарифметическому значению результатов всех измерений. При ограниченном числе измерений истинное значение будет отличаться от среднеарифметического и необходимо оценить величину этого расхождения: Х = а ± Dх.

Следует еще раз подчеркнуть, что среднеарифметическое значение, принимаемое за истинное значение измеряемой величины, является наиболее вероятным значением. Среди значений аi могут оказаться значения, которые в действительности ближе к истинному значению.

Отклонение Dх вероятнейшего значения а от его истинного значения Х называют истинной абсолютной ошибкой.

1.6. Оценка точности измерений

Для ряда равноточных измерений а1, а2 .аn определим его среднеарифметическое значение а и составим разности (а - а1), (а - а2), ., (а - аn).

Каждую из этих разностей называют вероятнейшей ошибкой отдельного измерения (Vi). Вероятнейшие ошибки, как и истинные ошибки Dхi = (Х - аi), бывают положительные и отрицательные, нулевые. Рассмотрим т.е. алгебраическая сумма вероятнейших ошибок равна нулю при любом числе измерений. Истинные случайные ошибки таким свойством не обладают.

Вероятнейшие ошибки Vi лежат в основе математической обработки результатов измерений: именно по ним вычисляют предельную абсолютную ошибку Dаi среднеарифметического а и тем самым оценивают точность результата измерений.

Средняя истинная случайная ошибка (иначе - среднее отклонение отдельного измерения) определяется выражением (Dх1+Dх2+ .+Dхn)/n.

Величина [(Dх1)2+(Dх2)2+ .+(Dхn)2]/n представляет средний квадрат случайной ошибки или дисперсию S2 выборки (при ограниченном n) или генеральной совокупности s2 (при бесконечном n). Средняя квадратичная ошибка отдельного измерения S = является лучшим критерием точности, чем средняя случайная ошибка, т.к. не происходит компенсации положительных и отрицательных ошибок Dхi и сильнее учитывается действие крупных ошибок.

Поскольку истинное значение Х измеряемой величины неизвестно, то неизвестны и истинные случайные ошибки хi. Для определения средней квадратичной ошибки S используется положение теории случайных ошибок, что при большом числе измерений n справедливо равенство

.

Различный знаменатель объясняется тем, что величины хi являются независимыми, а из n величин Vi независимыми являются n-1, т.к. в величину Vi входит а, само определяемое из этих же n измерений.

Важно, что не зная самих истинных случайных ошибок удается вычислить среднюю квадратичную ошибку определенного измерения:

S = ±.

Оценим теперь погрешность результата всей серии эксперимента, т.е. определим величину Dх = Х - а.

Для этого проведем преобразование выражения

Sn2 =

=

= .

Если повторить серии по n измерений в каждой N раз, можно получить средние значения а1, а2, . , аN и погрешности результатов измерений

(Dх)1 = (Х - а1); (Dх)2 = (Х - а2); . ; (Dх)N = (Х - аN)

и среднюю среднеквадратичную погрешность серии

Sa2 = .

При большом числе N S2a ® s2a

.

Усредняя выражение S2n по числу серий N, получаем

Sa2 = (Dx)2 = Sn2 - .

Учитывая что при большом n S2n ® s2 и S2 ® s2 получаем искомую

связь между дисперсиями всего опыта s2a и отдельного эксперимента [i1] s2

,

т.е. дисперсия s2a результата серии из n измерений в n раз меньше дисперсии отдельного измерения. При ограниченном числе n измерений приближенным выражением s2a будет S2a

.

Выражения s2a и S2a отражают фундаментальный закон возрастания точности при росте числа наблюдений. Из него следует, что желая повысить точность измерений в 2 раза мы должны сделать вместо одного - четыре измерения; чтобы повысить точность в 3 раза, нужно увеличить число измерений в 9 раз и т.д.

1.7. Понятие доверительного интервала и доверительной вероятности

Как установлено ранее, истинное значение измеряемой величины Х отличается от среднеарифметического a на некоторую величину Dx. На рис. 2 представлено расположение истинного значения Х и а, полученного из некоторых измерений а1, а2, а3.

Ясно, что случайные величины а1, а2, а3 обусловят случайный характер абсолютной погрешности Dx результата серии измерений, которая будет распределена по закону Гаусса:

.

Рис. 2. Взаимное расположение Х и а, полученных

из трех измерений а1, а2, а3

Тогда вместо выражения Х = а ± Dх можно записать а - Dх £ Х £ а + D.

Интервал (а - Dх; а + Dх), в который по определению попадает истинное значение X называют доверительным интервалом. Надежностью (уровнем значимости) результата серии измерений называется вероятность a того, что истинное значение X измеряемой величины попадет в доверительный интервал. Вероятность a выражается в долях единицы или процентах. Графически надежность отражается площадью под кривой нормального распределения в пределах доверительного интервала, отнесенной к общей площади. Выбор надежности определяется характером производимых измерений. Например, к деталям самолета предъявляются более жесткие требования, чем к лодочному мотору, а к последнему значительно больше, чем к ручной тачке. При обычных измерениях ограничиваются доверительной вероятностью 0,90 или 0,95. Для любой величины доверительного интервала (выраженного в долях s ) по формуле Гаусса может быть просчитана соответствующая доверительная вероятность. Эти вычисления проделаны и сведены в таблицу, имеющуюся практически во всей литературе по теории вероятности. На рис. 3 представлены значения надежности a при величине доверительного интервала ±s, ±2s, ±3s. Эти значения доверительной вероятности рекомендуется запомнить.


Страница: