Обработка результатов экспериментов и наблюденийРефераты >> Математика >> Обработка результатов экспериментов и наблюдений
Дано: хо = 0, х1 = 1, х2 = 2, yо = 1, y1 = 1, y2 = 3. Определить многочлен F (х).
Записывая многочлен F (х) в виде
F (х) = ао + а1х + а2х2
составим систему уравнений
или
откуда ао = 1, а1 = - 1, а2 = 1 и интерполирующий многочлен имеет вид
F (х) = 1 - х + х2.
Теперь рассмотрим общий подход к отысканию интерполяционного многочлена F (х), не решением системы, а непосредственной записью.
Определим выражение для многочлена, принимающего в точке х = хо значение yо = 1, а в точках х = х1, х2, ., хn - значения y1 = y2 = . = yn = 0. Очевидно, что многочлен будет иметь вид
.
Здесь при х = хо числитель и знаменатель равны, а при х = х1, х2, ., хn - числитель равен нулю.
Теперь построим многочлен Fо (х), принимающий в точке хо значение yо и обращающийся в нуль для значений х = х1, х2, ., хn. Учитывая предыдущее построение можно записать
.
Теперь можно записать многочлен F (х) для произвольного значения хi ( i = 0, 1, 2, ., n ) принимающего значения F (хi) = yi, а во всех остальных точках х ¹ хi значение, равное нулю
.
Как видно из записи, числитель не будет содержать выражения (х - хi), а знаменатель - (хi - хi), т.е. выражений, обращающих числитель и знаменатель в нуль.
Искомый многочлен будет равен сумме
,
т.е. снова в каждой точке хi одно из слагаемых принимает нужное значение yi, а все остальные обращаются в нуль.
В развернутом виде
=
. + .
Полученная формула называется интерполяционной формулой Лагранжа.
Используя формулу Лагранжа запишем многочлен F (х) для разобранного выше примера.
=
=.
Получили тоже самое выражение, что и ранее.
Контрольные вопросы
1. Назначение графического метода обработки результатов;
2. Сущность графического метода обработки результатов;
3. Понятие и назначение функциональной шкалы;
4. Выбор масштаба функциональной шкалы;
5. Сущность аппроксимации методом средних;
6. Сущность аппроксимации методом наименьших квадратов;
7. Принципиальное отличие метода интерполирования от метода наименьших квадратов.
4.ОСНОВЫ НОМОГРАФИИ
Номография - слово греческое. Номос - закон, графо - пишу, черчу. В буквальном переводе это слово означает ²черчение закона².
Своей задачей номография ставит построение специальных графиков - номограмм, служащих для решения различных уравнений. Номограммы дают возможность компактно представлять функции многих переменных и таблицы с несколькими входами. На номограммах можно решать некоторые трансцендентные уравнения и системы таких уравнений. Номограммы можно применять не только для вычислительных целей, но и для исследования положенных в их основу функциональных зависимостей.
Наглядность представления различных закономерностей и простота использования номограмм при достаточно высокой точности результата обеспечивают широкое использование номограмм в различных областях техники.
В основе номограмм лежит понятие функциональной шкалы ( см. выше ). На основе функциональных шкал создаются не только номограммы, но и различные вычислительные средства: универсальные вычислительные номограммы, логарифмические линейки и т.п.
В данной главе излагается один из возможных видов номограмм - номограммы в декартовой системе координат, имеющие достаточно широкое использование в машиностроении.
4.1. Номограммы в декартовой системе координат
В разделах 3.1., 3.2. описана процедура построения графиков для функции одного переменного. При этом на графике получается одна линия ( прямая или кривая ).
Если же изучаемая функция зависит от двух переменных
Z = ¦ (х, y),
то придавая в этом уравнении, например, параметру y ряд частных ( постоянных ) значений y1, y2, ., yn можно, как и для функции одного переменного, построить зависимости
Z = ¦ (х, y1);
Z = ¦ (х, y2);
.
Z = ¦ (х, yn).
Получим систему кривых ( в частном случае прямых ), называемых номограммой из ²помеченных² линий, т.к. каждая линия помечается соответствующим значением yi.
Пример. При исследовании процесса фрезерования было установлено, что наиболее целесообразно величину радиального биения смежных зубьев фрезы назначать по условию обеспечения участия в процессе резания всех зубьев фрезы. Аналитически это условие выражается уравнением
,
где Sz - расчетная величина подачи на зуб, мм/зуб;
k = - параметр операции;
D - диаметр фрезы, мм;
t - глубина резания, мм;
D - величина биения смежных зубьев фрезы, мм.
Как видно, Sz = ¦ (k, D) является функцией двух параметров. Здесь можно отметить, что, фактически Sz = ¦ (D, t, D), т.е. функцией трех параметров, но два параметра (D, t) заменены одним - k = , легко определяемым и уменьшающим количество переменных. Данный прием широко используется в номографии.
Теперь необходимо определиться с осями и помеченным параметром. В качестве оси ординат, в соответствии с функциональной зависимостью, рационально принять Sz. В качестве же оси абсцисс можно принять либо k, либо D. Если в качестве оси ординат принять k ( а помеченным параметром Di ), то зависимость
Sz = ¦ (k, Di)
будет получаться криволинейной, в соответствии с закономерностью . Проще строить и использовать прямолинейные графики при равномерных шкалах. Поэтому стараются номограммы строить на основе прямых линий. Поэтому лучше будет строить номограмму из помеченных линий вида
Sz = ¦ (D, Ki),
где .
Теперь выбираем масштаб построения и диапазоны изменения переменных. С учетом условий процесса фрезерования принимаем D £ 0,08 мм; Sz £ 0,20 мм/зуб. Параметр k изменяем дискретно k = 2; 5; 10; 20; 30; 40; 50. Так как зависимость Sz = ¦ (D, Ki) является прямой линией, проходящей через начало координат, то для построения графиков достаточно вычислить только одно значение Sz при каком - либо значении D. Например, для k = 2, при D = 0,06 мм имеем