Методика обучения школьников основам комбинаторики, теории вероятностей и математической статистики в рамках профильной школы
Рефераты >> Педагогика >> Методика обучения школьников основам комбинаторики, теории вероятностей и математической статистики в рамках профильной школы

Теорема. Пусть вероятность события А в испытании s равна р, и пусть проводятся серии, состоящие из n независимых повторений этого испытания. Через m обозначим число испытаний, в которых происходило событие А. Тогда для любого положительного числа e выполняется неравенство

.

Эту теорему лучше давать без доказательства по следующим причинам: во-первых, на доказательство уйдет много времени и, во-вторых, самим доказательством можно «затмить» идею закона больших чисел.

Задачи:

1. Подбрасываем монету 10 раз. Какова вероятность двукратного появления герба?

2. Вероятность того, что изделие не пройдет контроля, равна 0,125. какова вероятность того, что среди 12 изделий не будет ни одного забракованного контролером?

3. вероятность того, что расход электроэнергии в продолжение одних суток не превысит установленной нормы, равна р=0,75. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.

4. С разных позиций по мишени выпускают 4 выстрела. Вероятность попадания первым выстрелом примерно 0,1, вторым – 0,2, третьим – 0,3 и четвертым – 0,4. Какова вероятность того, что все четыре выстрела - промахи?

5. Вы играете в шахматы с равным по силе партнером. Чего следует больше ожидать: трех побед в 4 партиях или пяти побед в 8 партиях?

6. Сколько раз придется бросать игральную кость, чтобы вероятнейшее число появления шестерки было бы 32?

7. Какова вероятность равенства с точностью до 0,1 при 100 опытах?

Занятие №13. Самостоятельная работа.

Изучение случайных событий желательно завершить самостоятельной работой, в которой одну-две задачи надо решить как можно большим числом способов. Неплохо включить в работу и теоретический вопрос (чтобы проверить, с одной стороны, понимание учащимися теоретической части пройденного материала и, с другой стороны, умение учащихся формулировать и излагать свои мысли).

Примерный состав самостоятельной работы:

Вариант 1

1. Среди облигаций займа 25% выигрышных. Найдите вероятность того, что из трех взятых облигаций хотя бы одна выигрышная.

2. Найти вероятность по данным вероятностям: Р(А)=а, Р(В)=b, Р(А+В)=с.

3. Могут ли несовместные события быть в то же время независимыми и наоборот? Привести примеры.

Вариант 2

1. При включении зажигания двигатель начинает работать с вероятностью р. Найти вероятность того, что для ввода двигателя на работу придется включить зажигание не более двух раз.

2. Найти вероятность по данным вероятностям: Р(А)=а, Р(В)=b, Р(А+В)=с.

3. Почему формула Бернулли применяется при независимости опытов?

Способы решения первых задач подробно изложены в методике.

Занятие №14. Кому нужна теория вероятностей?

Форма организации данного занятия – круглый стол – представление учащимися индивидуальных творческих работ по выбору:

- небольшая подборка интересных вероятностных задач из различных областей профессиональной деятельности;

- исследовательская работа в области теории вероятности;

- индивидуальный проект, отражающий возможность применения знаний по теории вероятности в какой-либо деятельности человека или для какой-либо профессии;

- написание программ для вычисления вероятностей на каком-либо языке программирования.

Общая тема творческих работ: «Кому нужна теория вероятностей?».

В качестве источников литературы можно порекомендовать следующие книги: Китайгородский, А.И.– посвящена применению законов теории вероятностей к различным жизненным ситуациям и в разных областях науки.

Раздел 3. Случайные величины.

Здесь учащиеся знакомятся еще с одним видом функции – случайной величиной. Эта специфическая числовая функция дополняет и расширяет представление школьников о функциональных зависимостях.

Занятие №1. Понятие случайной величины. Закон распределения вероятностей дискретной случайной величины.

В теории вероятностей приводились события, состоящие в появлении того или иного числа. Например, при бросании игральной кости могли появиться числа 1, 2, 3, 4, 5, 6. Наперед определить число выпавших очков невозможно, поскольку оно зависит от многих случайных причин, которые полностью не могут быть учтены. В этом смысле число очков есть величина случайная; числа 1, 2, 3, 4, 5, 6 есть возможные значения этой величины.

Случайной называют величину, которая в результате испытания примет одно и только одно возможное значение, наперед не известное и зависящее от случайных причин, которые заранее не могут быть учтены.

Пример 1. Число родившихся мальчиков среди 100 новорожденных есть случайная величина, которая имеет следующие возможные значения: 0, 1, 2, …, 100.

Пример 2. Расстояние, которое пролетит снаряд при выстреле из орудия, есть случайная величина. Действительно, расстояние зависит не только от установки прицела, но и от силы и направления ветра, от температуры и других причин, которые могут полностью учтены. Возможные значения этой величины принадлежат некоторому промежутку (а, b).

Случайные величины обозначают прописными буквами X, Y, Z, а их возможные значения – соответствующими строчными буквами x, y, z. Например, если случайная величина X имеет три возможных значения, то они будут обозначены так: x1, x2, x3.

Виды случайных величин

Дискретной или прерывной называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной случайной величины (ДСВ) может быть конечным или бесконечным (см. пример 1).

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка. Очевидно, число возможных значений НСВ бесконечно (см. пример 2).

Закон распределения вероятностей ДСВ

На первый взгляд может показаться, что для задания ДСВ достаточно перечислить все ее возможные значения. В действительности это не так: случайные величины могут иметь одинаковые перечни возможных значений, а вероятности их – различные. Поэтому для задания ДСВ не достаточно перечислить всевозможные ее значения, нужно еще указать их вероятности.

Законом распределения дискретной случайной величины называют соответствие между возможными значениями и их вероятностями; его можно задать таблично, аналитически (в виде формулы) и графически.

При табличном задании закона распределения ДСВ первая строка таблицы содержит возможные значения, а вторая – их вероятности:

X

x1

x2

xn

p

p1

p2

pn


Страница: