Методика обучения школьников основам комбинаторики, теории вероятностей и математической статистики в рамках профильной школыРефераты >> Педагогика >> Методика обучения школьников основам комбинаторики, теории вероятностей и математической статистики в рамках профильной школы
Например, события «пошел дождь» и «наступило утро» являются совместными, а события «наступило утро» и «наступила ночь» - несовместными.
Задачи:
1. В сыгранной Катей и Ларисой партии в шахматы определить совместные и несовместные события, если: 1) Катя выиграла, Лариса проиграла; 2) Катя проиграла, Лариса проиграла.
2. Из событий: 1) «идёт дождь»; 2) «на небе нет ни облака»; 3) «наступило лето» - составить всевозможные пары и выявить среди них пары совместных и пары несовместных событий.
3. Из событий: 1) «наступило утро»; 2) «сегодня по расписанию 6 уроков»; 3) «сегодня 1 января»; 4) «температура воздуха в Мариинске +30°С» - составить всевозможные пары и выявить среди них пары совместных и пары несовместных событий.
События называют равновозможными, если есть основания считать, что ни одно из них не является более возможным, чем другое.
Например, «выпадение герба» и «выпадение цифры» при бросании монеты – равновозможные события. «Изъятие из набора домино дубля» и «изъятие из набора домино костяшки с разными очками» - неравновозможные события, так как дублей в наборе домино всего 7, а остальных костяшек 21.
Несколько событий образуют полную группу, если в результате испытания появится хотя бы одно из них.
Например, попадание и промах при выстреле; появление 1, 2, 3, 4, 5, 6 очков при бросании игральной кости.
Если два единственно возможных события образуют полную группу, то их называют противоположными (выигрыш и не выигрыш, попадание и промах). Если одно из двух противоположных событий обозначено через А, то другое принято обозначать .
Задачи:
1. Ниже перечислены разные события. Укажите противоположные им события.
а) Мою новую соседку по парте зовут или Таня, или Аня.
б) Из пяти выстрелов в цель попали хотя бы два.
в) На контрольной работе я не решил, как минимум, три задачи из пяти.
2. Назовите событие, для которого противоположным является такое событие:
а) на контрольной работе больше половины класса получили пятёрки;
б) все семь пулек в тире у меня попали мимо цели;
в) в нашем классе все умные и красивые;
г) в кошельке у меня есть три рубля одной монетой, или три доллара одной бумажкой.
Рассматривая события как множества, можно определить действия над событиями. (Введение понятий суммы и произведения событий позволяет подготовить действия над вероятностями).
a) Объединение событий или сумма событий - AÈB или А+В - событие, содержащее все элементы А и В.
Пример 1.
Испытание: бросаем игральную кость.
Событие А: выпало четное число очков.
Событие B: выпало число очков меньше, чем 4.
Событие A+B: выпало 1, 2, 3, 4 или 6 очков.
Пример 2.
Событие А: круг.
Событие B: квадрат.
Событие A+B: заштриховано.
b) Пересечение событий или произведение событий - AÇB или АВ - событие, содержащее только общие элементы А и В.
Пример 3.
Испытание: бросаем игральную кость.
Событие А: выпало четное число очков.
Событие B: выпало число очков меньше, чем 4.
Событие AB: выпало 2 очка.
Пример 4.
Событие А: круг.
Событие B: квадрат.
Событие AB: заштриховано.
Какими являются события C, D, E?
Задачи:
1. Событие А – «попадание в мишень первым выстрелом», событие В – «попадание в мишень вторым выстрелом». В чем состоит событие А+В?
2. Событие А – «ученик учится без троек», событие В – «ученик учится без двоек», событие С – «ученик не отличник». Сформулируйте: А+В+С.
3. Событие А – «лотерейный выигрыш 10 руб.», событие В – «лотерейный выигрыш 20 руб.», событие С – «лотерейный выигрыш 30 руб.», событие D – «лотерейный выигрыш 40 руб.». В чем состоит событие А+В+С+D?
4. Событие А – «появление нечетного числа очков при бросании игральной кости», событие В – «появление 3 очков при бросании игральной кости», событие С – «появление 5 очков при бросании игральной кости». В чем состоят события АВС, АВ, АС, ВС?
5. Проводятся две лотереи. Если событие А1 – «выигрыш по билету первой лотереи» и событие А2 – «выигрыш по билету второй лотереи», то что означают события: А1А2+А2, А1+А2+А1А2?
6. Известно, что события А и В произошли, а событие С не наступило. Определите, наступили ли следующие события: А+ВС, (А+В)С, АВ+С, АВС.
7. Турист из пункта А в пункт В может попасть двумя дорогами. обозначим события: А1 – «он пошел первой дорогой», А2 – «он пошел второй дорогой».
Из пункта В в пункт С ведут три дороги. Обозначим события: В1 – «он пошел первой дорогой», В2 – «он пошел второй дорогой», В3 – «он пошел третьей дорогой».
Применяя понятия суммы и произведения, а также противоположного события, постройте события, состоящие в том, что:
- от А до В он выбрал дорогу наугад, а от В до С пошел третьей дорогой;
- от А до В он пошел первой дорогой, а от В до С – дорогой, выбранной наугад;
- от А до В он пошел не первой дорогой, а от В до С – не третьей;
- он дошел от А до С.
Занятие №3. Эксперименты и их исходы.
Первый шаг на пути ознакомления учащихся с понятием вероятность состоит в длительном экспериментировании, то есть в многочисленных манипуляциях с разнородными предметами (игральными костями, волчками, монетами, шарами и прочими).
Для проведения экспериментов учащихся лучше разбить на группы по 2-3 человека, один из которых будет фиксировать результаты эксперимента, а остальные проводить его.
Могут быть предложены следующие задания-эксперименты:
Задание №1. 100 раз подбросить монету и зафиксировать количество выпадений «орла» и «решки».
Задание №2. 100 раз подбросить кнопку и зафиксировать количество раз, когда кнопка упала острием вниз и количество раз, когда кнопка упала острием вверх.
Задание №3. Выберите какой-нибудь текст, содержащий 150 слов. Подсчитайте число слов, составленных из 6 букв.
Задание №4. Выберите 7 строк произвольного текста. Подсчитайте, сколько раз встречаются в тексте буквы о, е, а, ю.
Задание №5. 100 раз подбросить игральную кость и зафиксировать количество выпадений 6.
После проведения экспериментов целесообразно ввести понятия эксперимента и его исхода. Четкое определение и разграничение при проведении реальных физических экспериментов таких понятий, как исход эксперимента и событие, возможное в эксперименте, в дальнейшем поможет избежать многих трудностей при введении понятия вероятности случайного события.
Занятие №4. Классическое определение вероятности.
Вероятность – одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Приведем определение, которое называют классическим. Далее укажем слабые стороны этого определения и приведем другие определения, позволяющие преодолеть недостатки классического определения.