Методика обучения школьников основам комбинаторики, теории вероятностей и математической статистики в рамках профильной школыРефераты >> Педагогика >> Методика обучения школьников основам комбинаторики, теории вероятностей и математической статистики в рамках профильной школы
Найдите относительные частоты событий:
А = {старшеклассник родился в майское воскресенье};
В ={старшеклассник родился в зимний четверг};
С = {старшеклассник родился в понедельник};
D = {старшеклассник родился весной}.
Занятие №7. Геометрическая вероятность.
Геометрическая вероятность – это своеобразный аналог формулы классического определения вероятности события: отношение двух натуральных чисел (количество благоприятных исходов к количеству всевозможных исходов) в формуле классического определения вероятности событий заменяется отношением мер (длин, площадей, объемов) геометрических множеств, где оба множества (в общем случае) представляют собой бесконечные множества исходов. Тем самым достигается возможность найти вероятность и в случае бесконечного множества исходов. В этом – конечное и бесконечное множества исходов – и заключается основное различие между классическим определением вероятности события и геометрическим.
Рассмотрение геометрической вероятности развивает у учащихся пространство воображения и способствует формированию умений переводить исходную вероятностную ситуацию на геометрический язык.
Геометрические вероятности можно дать в ознакомительном порядке, разобрав для этого ряд задач.
Задачи:
1. На отрезке L длины 20 см помещен меньший отрезок l длины 10 см. найти вероятность того, что точка, наудачу поставленная на большой отрезок, попадет и на меньший отрезок. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения.
2. Внутри квадрата со стороной 10 см выделен круг радиусом 2 см. случайным образом внутри квадрата отмечается точка. Какова вероятность того, что она попадет в выделенный круг?
3. На плоскости начерчены две концентрические окружности, радиусы которых 5 и 10 см соответственно. Найти вероятность того, что точка, брошенная наудачу в большой круг, попадет также и в кольцо, образованное построенными окружностями. Предполагается, что вероятность попадания точки в плоскую фигуру пропорциональна площади этой фигуры и не зависит от ее расположения.
4. Перед окопами вдоль прямой линии через каждые 10 м установлены противотанковые мины. Перпендикулярно этой линии движется танк, ширина которого 3 м. Какова вероятность того, что танк пересечет линию установки мин невредимым, то есть, что мина не взорвется?
Занятие №8. Теорема сложения вероятностей.
Из четырех теорем о сложении вероятностей (для двух несовместных событий, для n несовместных событий (обобщение), для событий, образующих полную группу и для противоположных событий) практический интерес для слушателей курса представляют лишь две теоремы: первая и третья. Обе они часто используются при решении вероятностных задач, и поэтому их следует подробно с доказательством рассмотреть на занятии. Теорему о противоположных событиях (как частный случай третьей теоремы) можно поручить рассказать одному из учащихся.
Теорема 1. Пусть события А и В – несовместные, причем вероятности этих событий известны. Тогда вероятность появления одного из двух несовместных событий, безразлично какого, равна сумме вероятностей этих событий:
Р(А+В)=Р(А)+Р(В).
Доказательство. Введем обозначения: n – общее число возможных элементарных исходов испытания; m1 – общее число исходов, благоприятствующих событию А; m2 – общее число исходов, благоприятствующих событию В.
Число элементарных исходов, благоприятствующих наступлению либо события А, либо события В, равно m1+m2. Следовательно,
Р(А+В)=.
Приняв во внимание, что и , окончательно получим
Р(А+В)=Р(А)+Р(В).
Теорема 2. Вероятность появления одного из нескольких попарно несовместных событий, безразлично какого, равна сумме вероятностей этих событий:
Р(А1+А2+…+Аn)=Р(А1)+Р(А2)+…+Р(Аn).
Теорема 3. Сумма вероятностей событий А1, А2, …, Аn, образующих полную группу, равна 1:
Р(А1)+Р(А2)+…+Р(Аn)=1.
Доказательство. Так как появление одного из событий полной группы достоверно, а вероятность достоверного события равна единице, то
Р(А1+А2+…+Аn)=1. (*)
Любые два события полной группы несовместны, поэтому можно применить теорему сложения:
Р(А1+А2+…+Аn)=Р(А1)+Р(А2)+…+Р(Аn). (**)
Сравнивая (*) и (**), получим
Р(А1)+Р(А2)+…+Р(Аn)=1.
Теорема 4. Сумма вероятностей противоположных событий равна 1:
Р(А)+Р()=1.
Задачи:
1. В урне 30 шаров: 10 красных, 5 синих и 15 белых. Найти вероятность появления цветного шара.
2. На стеллаже библиотеки в случайном порядке расставлено 15 учебников, причем 5 из них в переплете. Библиотекарь берет наудачу три учебника. Найти вероятность того, что хотя бы один из взятых учебников окажется в переплете. (Решить двумя способами: с помощью 1 и 4 теорем).
3. Производится бомбометание по трем складам боеприпасов, причем сбрасывается одна бомба. Вероятность попадания в первый склад 0,01; во второй 0,008; в третий 0,025. При попадании в один из складов взрываются все три. Найти вероятность того, что склады будут взорваны.
4. Круговая мишень состоит из трех зон: I, II, III. Вероятность попадания в первую зону при одном выстреле 0,15, во вторую 0,23, в третью 0,17. найти вероятность промаха.
Занятие №9. Теорема умножения вероятностей.
Перед тем как излагать теорему умножения вероятностей необходимо ввести понятие условной вероятности. Привести учащихся к этому понятию поможет разбор примера.
Пример: Из ящика, в котором 3 белых и 3 черных шаров, наугад вынимают последовательно один за другим два шара. Какова вероятность появления белого шара при втором испытании, если при первом испытании был извлечен черный шар?
Условная вероятность события В при условии, что событие А уже наступило, по определению равна
(Р(А)>0).
Опираясь на определение условной вероятности, учащиеся без труда смогут сформулировать теорему о вероятности совместного появления двух событий.
Теорема 1. Вероятность совместного появления двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предложении, что первое событие уже наступило:
Р(АВ)=Р(А)РА(В).
Пусть вероятность события В не зависит от появления события А.
Событие В называют независимым от события А, если появление события А не изменяет вероятности события В, то есть
РА(В)=Р(В) или РВ(А)=Р(А).
Теорема 2. Вероятность совместного появления двух независимых событий равна произведению их вероятностей:
Р(АВ)=Р(А)Р(В).
На практике о независимости событий заключают по смыслу задачи. Например, вероятности поражения цели каждым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события «первое орудие поразило цель» и «второе орудие поразило цель» независимы.