Методика обучения школьников основам комбинаторики, теории вероятностей и математической статистики в рамках профильной школыРефераты >> Педагогика >> Методика обучения школьников основам комбинаторики, теории вероятностей и математической статистики в рамках профильной школы
Задачи:
1. Среди ста лотерейных билетов есть 5 выигрышных. Найти вероятность того, что два наудачу выбранные билета окажутся выигрышными.
2. В коробке 9 одинаковых радиоламп, 3 из которых были в употреблении. В течение рабочего дня мастеру для ремонта аппаратуры пришлось взять две радиолампы. Какова вероятность того, что обе взятые лампы были в употреблении?
3. У сборщика имеется 3 конусных и 7 эллиптических валиков. Сборщик взял один валик, а затем второй. Найти вероятность того, что первый из взятых валиков – конусный, а второй – эллиптический?
4. Бросают два игральных кубика. Какова вероятность того, что на первом кубике выпадет четное число очков, а на втором – число, меньшее 6?
5. Имеется 3 ящика, содержащих 10 деталей. В первом ящике 8, во втором 7 и в третьем 9 стандартных деталей. Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что все три вынутые детали окажутся стандартными.
Занятие №10. Следствия теорем сложения и умножения.
Возвращаясь к занятию №8, где теорема сложения была рассмотрена для несовместных событий, целесообразно изложить теорему сложения для совместных событий. Доказательство приводить не обязательно, надо только ее проиллюстрировать.
Теорема 1. Вероятность появления хотя бы одного из двух совместных событий равна сумме этих событий без вероятности их совместного появления:
|
|
|
Пусть требуется найти вероятность события А, которое может наступить при условии появления одного из несовместных событий В1, В2, …, Вn, образующих полную группу.
Если А произошло вместе с одним из событий В1, В2, …, Вn, значит, произошло одно из несовместных событий В1А, В2А, …, ВnА.
Таким образом, А= В1А + В2А + … + ВnА.
Поскольку события В1, В2, …, Вn взаимно несовместны, то и события В1А, В2А, …, ВnА обладают тем же свойством. Поэтому
Р(А)= Р(В1А) + Р(В2А) + … + Р(ВnА).
По теореме умножения вероятностей зависимых событий имеем ; ; …; .
Поэтому
.
Теорема 2. Вероятность события А, которое может наступить лишь при условии появления одного из несовместных событий В1, В2, …, Вn, образующих полную группу, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события А:
.
Эту формулу называют «формулой полной вероятности».
С помощью этой формулы находим так называемую формулу Бейеса:
при i=1, 2, …, n.
Особенно широко она применяется при решении задач, связанных с вероятностной оценкой гипотез. Гипотезы – это события, про которых заранее не известно, какое из них наступит.
Доказать формулу Бейеса учащиеся могут самостоятельно.
Задачи:
1. Подбрасываем две монеты. Какова вероятность выпадения хотя бы одного герба?
2. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р1=0,7; р2=0,8. Найти вероятность попадания при одном залпе (из обоих орудий) хотя бы одним из орудий.
3. Отдел технического контроля проверяет на стандартность по двум параметрам серию изделий. Было установлено, что у 8 из 25 изделий не выдержан только первый параметр, у 6 изделий – только второй, а у 3 изделий не выдержаны оба параметра. Наудачу берется одно из изделий. Какова вероятность того, что оно не удовлетворяет стандарту?
4. В лотерее выпущено n билетов, m из которых выигрывают. Гражданин купил k билетов. Какова вероятность того, что один из купленных билетов выигрышный?
5. В урну, содержащую 2 шара, опущен белый шар, после чего из нее наудачу извлечен один шар. Найти вероятность того, что извлеченный шар окажется белым, если равновозможны все возможные предположения о первоначальном составе шаров (по цвету).
6. Из 10 учеников, которые пришли на экзамен по математике, трое подготовились отлично, четверо – хорошо, двое – удовлетворительно, а один совсем не готовился – понадеялся на то, что все помнит. В билетах 20 вопросов. Отлично подготовившиеся ученики могут ответить на все 20 вопросов, хорошо – на 16 вопросов, удовлетворительно – на 10, и не подготовившиеся – на 5 вопросов. Каждый ученик получает наугад 3 вопроса из 20. Приглашенный первым ученик ответил на все три вопроса. Какова вероятность того, что он отличник?
Занятие №11. Формула Бернулли. Закон больших чисел.
Формула Бернулли намного упрощает путь решения задач в том случае, когда опыты повторяются независимо друг от друга и вероятность интересующего нас события не меняется.
Вероятность того, что при повторных испытаниях событие А наступит m раз и не наступит n-m раз находится по формуле:
.
Вычисления по формуле Бернулли при больших значениях n и m затруднительны. В математике установлены приближенные формулы, позволяющие находить приближенные значения для Рn(m) и, что еще важнее для практики, суммы значений Рn(m), таких, что дробь (относительная частота появления события А) лежит в данных границах.
По формуле Бернулли вероятность того, что в серии из 100 подбрасываний монеты все 100 раз выпадет герб, равна , то есть примерно 10-30. Не столь мала, но все, же ничтожна вероятность того, что цифра выпадет не более 10 раз. Наиболее вероятно, что число выпадений герба будет мало отличаться от 50.
Вообще при большом числе испытаний относительная частота появления события, как правило, мало отличается от вероятности этого события. Математическую формулировку этого качественного утверждения дает принадлежащий Я. Бернулли закон больших чисел, который в уточненной П.Л. Чебышевым гласит: