Учебник по биологии
Большинство гормонов по химической природе представляют пептиды (малые белки), бывают также стероиды (из класса липидов) и моноамины (переделанные аминокислоты). Каждый гормон воздействует на определенные клетки-мишени или несколько типов клеток. Восприятие гормонального сигнала осуществляется специальными молекулами-рецепторами (гликопротеидами или гликолипидами), расположенными в оболочке либо в цитоплазме клетки (рис. 9). Возбужденный рецептор, катализируя цепь химических реакций, передает сигнал дальше - на рабочие структуры клетки. В результате идет ответная реакция в форме секреции (выброса активных веществ), специфических синтезов, размножения и роста клеток. Таким образом, гормоны участвуют в регуляции функционирования, роста и развития организма. На всех этапах от узнавания гормона клеточным рецептором до ответной реакции осуществляются элементарные физико-химические процессы: молекулярное узнавание на основе стереохимического соответствия (ключ-замок), обратимое конформационное изменение («вздрагивание») молекул, переход энергии из одной реакции в другую и т. п.
Рис. 9
Нервная регуляция происходит с помощью особых нервных клеток (нейронов), имеющих длинные отростки и связанные в нервные цепи или сети разной сложности. Нервная регуляция имеется уже у гидр и медуз - наиболее простых многоклеточных животных, а наивысшего развития достигает у позвоночных, особенно у человека с его развитым головным и спинным мозгом, вегетативной системой ганглиев и локальными скоплениями нейронов во внутренних органах. Буквально каждый участок тела пронизан нервными отростками и их разветвленными окончаниями, что позволяет организму иметь информацию о состоянии условий среды во всех его точках и управлять этими состояниями - как правило с участием гормональной регуляции. На основе нервных связей формируются сложные программы внутренней регуляции органов, поведения и высшей нервной деятельности.
Наиболее сложным проявлением высшей нервной деятельности у человека выступает сознание как высший уровень психической активности. Важнейшей функцией сознания является мышление с его основными операциями абстрагирования, обобщения, опосредствования и др. Мышление направлено на осознание существа предметов и явлений, созидание новых идей, мысленное построение действий и предвидение их последствий. Мышление представляет высшую форму активного отражения объективной реальности.
Способна ли современная наука объяснить природу нервной деятельности, понять тонкие механизмы работы мозга? В нейробиологии остается много вопросов и белых пятен, поскольку речь идет о самой сложной форме проявления жизни, но элементарные процессы изучены достаточно хорошо. Как уже сказано выше, структурной единицей нервной ткани является нервная клетка - нейрон. Нейроны имеют многочисленные разветвленные связи, особенно сложные в коре головного мозга. Связи распространяются, с одной стороны, на чувствительные рецепторы (кожные, зрительные, слуховые, обонятельные, рецепторы внутренних органов), а с другой - на все регулируемые исполнительные органы (мышцы, пищеварительный тракт, железы и др.). Элементарным явлением в нервной регуляции выступает рефлекс - ответная реакция органа (организма) на внешнее или внутреннее раздражение, осуществляемая через нервную систему (рис. 10). Представление о рефлексах было выдвинуто еще в 17 веке французским натуралистом и философом Р. Декартом, относившим их к автоматическим непроизвольным действиям. Российский физиолог И.М. Сеченов в 1863 г. утверждал, что «все акты сознательной и бессознательной жизни по способу происхождения суть рефлексы». В 20 веке эта концепция была развита И. П. Павловым в учении о безусловных и условных рефлексах. Многочисленные и разнообразные рефлексы слагаются в сложные поведенческие акты, инстинкты, на их основе и развивается вся высшая нервная деятельность. У низших животных преобладают наследственно закрепленные безусловные рефлексы. а у человека доминируют приобретенные условные рефлексы, закрепляемые в процессах обучения, воспитания, трудовой деятельности.
Рис. 10
Известны и биофизические принципы работы нейронов. По отросткам нейронов сигналы могут передаваться на большие расстояния за сотые доли секунды. Коснитесь рукой горячего предмета - тут же последует рефлекторный ответ. А, между прочим, сигнал успевает пробежать по чувствительным нервным волокнам от пальцев в спинальные ганглии и далее в спинной мозг, переключиться на другие нервные клетки и вернуться к мышцам, отдергивающим руку от горячего предмета (см. рис. 10). Установлено, что передача сигнала по нервному волокну осуществляется с помощью электрических токов и электромагнитных полей, генерируемых в поверхностной мембране нейрона.
Рассмотрим схему генерации и проведения нервного импульса (рис. 11).
Рис. 11
Изначально благодаря работе ионных насосов (см. сегмент 16, активный транспорт ионов) на мембране нервной клетки накапливается разность потенциалов (плюс снаружи, минус изнутри), достигающая 80 милливольт. Основным носителем внешнего положительного заряда являются ионы натрия. При раздражении участка мембраны раскрываются белковые поры, по которым ионы натрия устремляются в клетку (по закону простой диффузии). Поток заряженных частиц, в данном случае - поток ионов натрия по водно-белковому каналу, представляет электрический ток. Как хорошо известно, электрический ток порождает вокруг проводника электромагнитное поле; то же самое происходит в электромоторе на обмотках ротора. Возникшее электромагнитное поле тут же перебрасывается на соседние белковые поры, раскрывая их для ионов натрия. Порождается цепная реакция от одной поры к другой, которая распространяется вдоль всего нервного волокна. Завершается передача нервного импульса раздражением мембраны на кончике волокна и выбросом порции медиатора - вещества, возбуждающего следующую клетку. Если это будет мышечная клетка, последует сократительная реакция с участием микронитей и миозина (см. сегмент 15 и рис. 7). В соматической нервной системе сигналы проходят особенно быстро, так как большие отрезки волокон покрыты так называемой миэлиновой оболочкой, и электромагнитное поле «перескакивает» через эти участки, а не «ползет» по всем порам мембраны. Ситуация сравнима с той, когда лошадь под всадником или хищник, преследующий добычу, переходят с бега рысью в галоп.
Заметим, что электрической возбудимостью и проводимостью обладают и другие ткани, в частности мышечные пучки сердца. Это позволяет организовать его ритмичную, бесперебойную и в известной мере автономную работу. В случае остановки сердца, если в нем не произошли сильные структурные нарушения, восстановить работу можно разрядами электрического тока, что и делается в экстренной медицине.