Исследование движений плоскости и некоторых их свойствРефераты >> Математика >> Исследование движений плоскости и некоторых их свойств
Cодержание
1. Из истории развития теории движений.
2. Определение и свойства движений.
3. Конгруэнтность фигур.
4. Виды движений.
4.1. Параллельный перенос.
4.2. Поворот.
4.3. Симметрия относительно прямой.
4.4. Скользящая симметрия.
5. Исследование особых свойств осевой симметрии.
6. Исследование возможности существования других видов движений.
7. Теорема подвижности. Два рода движений.
8. Классификация движений. Теорема Шаля.
9. Движения как группа геометрических преобразований.
10. Применение движений в решении задач.
Литература.
1. История развития теории движений.
Первым, кто начал доказывать некоторые геометрические предложения, считается древнегреческий математик Фалес Милетский (625-547 г. до н.э.). Именно благодаря Фалесу геометрия начала превращаться из свода практических правил в подлинную науку. До Фалеса доказательств просто не существовало!
Каким же образом проводил Фалес свои доказательства? Для этой цели он использовал движения.
Движение – это преобразования фигур, при котором сохраняются расстояния между точками. Если две фигуры точно совместить друг с другом посредством движения, то эти фигуры одинаковы, равны.
Рис.1 Рис.2
Пусть О – общая вершина вертикальных углов АОВ и А’ОВ’. Но тогда ясно, что при повороте на 180о стороны одного из двух вертикальных углов как раз перейдут в стороны другого, т.е. эти два угла совместятся. Значит, вертикальные углы равны (рис.2).
Рис.3 Рис.4
Применял Фалес и ещё одно движение – параллельный перенос, при котором все точки фигуры смещаются в определённом направлении на одно и то же расстояние. С его помощью он доказал теорему, которая сейчас носит его имя:
если на одной стороне угла отложить равные отрезки и провести через концы этих отрезков параллельные прямые до пересечения со второй стороной угла, то на другой стороне угла также получатся равные отрезки (рис.4).
Во времена античной истории идеей движения пользовался и знаменитый Евклид, автор «Начал» – книги, пережившей более двух тысячелетий. Евклид был современником Птолемея I , правившего в Египте, Сирии и Македонии в 305-283 г. до н.э.
Движения в неявном виде присутствовали, например, в рассуждениях Евклида при доказательстве признаков равенства треугольников: «Наложим один треугольник на другой таким-то образом». По Евклиду, две фигуры называются равными, если они могут быть «совмещены» всеми своими точками, т.е. перемещая одну фигуру как твёрдое целое, можно точно наложить её на вторую фигуру. Для Евклида движение не было ещё математическим понятием. Впервые изложенная им в «Началах» система аксиом стала основой геометрической теории, получившей название Евклидовой геометрии.
В Новое время продолжается развитие математических дисциплин. В XI веке создаётся аналитическая геометрия. Профессор математики Болонского университета Бонавентура Кавальери (1598-1647) издаёт сочинение «Геометрия, изложенная новым способом при помощи неделимых непрерывного». Согласно Кавальери, любую плоскую фигуру можно рассматривать как совокупность параллельных линий или «следов», которые оставляет линия, передвигаясь параллельно самой себе. Аналогично даётся представление о телах: они образуются при движении плоскостей.
Дальнейшее развитие теории движений связывают с именем французского математика и историка науки Мишеля Шаля (1793-1880). В 1837 г. он выпускает труд «Исторический обзор происхождения и развития геометрических методов». В процессе собственных геометрических исследований Шаль доказывает важнейшую теорему:
всякое сохраняющее ориентацию движение плоскости является либо
параллельным переносом, либо поворотом,
всякое меняющее ориентацию движение плоскости является либо осевой
симметрией, либо скользящей симметрией.
Доказательство теоремы Шаля полностью проводится в п.8 данного реферата.
Важным обогащением, которым геометрия обязана XIX веку, является создание теории геометрических преобразований, в частности, математической теории движений (перемещений). К этому времени назрела необходимость дать классификацию всех существующих геометрических систем. Такую задачу решил немецкий математик Кристиан Феликс Клейн (1849-1925).
В 1872 г., вступая в должность профессора Эрлангенского университета, Клейн прочитал лекцию «Сравнительное обозрение новейших геометрических исследований». Выдвинутая им идея переосмысления всей геометрии на основе теории движений получила название «Эрлангенская программа».
По Клейну, для построения той или иной геометрии нужно задать множество элементов и группу преобразований. Задача геометрии состоит в изучении тех отношений между элементами, которые остаются инвариантными при всех преобразованиях данной группы. Например, геометрия Евклида изучает те свойства фигур, которые остаются неизменными при движении. Иначе говоря, если одна фигура получается из другой движением (такие фигуры называются конгруэнтными), то у этих фигур одинаковые геометрические свойства.
В этом смысле движения составляют основу геометрии, а пять аксиом конгруэнтности выделены самостоятельной группой в системе аксиом современной геометрии. Эту полную и достаточно строгую систему аксиом, подытожив все предыдущие исследования, предложил немецкий математик Давид Гильберт (1862-1943). Его система из двадцати аксиом, разделённых на пять групп, была впервые опубликована в 1899 г в книге «Основания геометрии».