Дифференциальные уравнения с разрывной правой частьюРефераты >> Математика >> Дифференциальные уравнения с разрывной правой частью
Метод функций Ляпунова переносится и на случай разрывной правой части системы
. (1)
Как было показано в первой главе, уравнения (1) сводятся к диф. включениям
(2)
Для диф. включений имеются два типа устойчивости: устойчивость и слабая устойчивость.
Определение 1.
Решение дифференциального включения (2) называется устойчивым (соответственно слабо устойчивым), если для каждого существует такое , что для каждого такого , что , каждое решение (соответственно некоторое решение) с начальным условием при существует и удовлетворяет неравенству
().
Асимптотическая устойчивость и слабая асимптотическая устойчивость определяются аналогично, но с дополнительным условием
Пример 1.
(). Решение асимптотически устойчиво. При любое другое решение достигает положения равновесия x=0 за конечное время, а при за бесконечное время.
Пример 2.
, F(x) – отрезок с концами kx и mx. - решение. Для других решений имеем
При асимптотически устойчиво,
при устойчиво,
при слабо асимптотически устойчиво,
при неустойчиво.
Для диф. уравнений с непрерывной правой частью известны теоремы Ляпунова об устойчивости и об асимптотической устойчивости [4]. В работе [17] сформулированы подобные теоремы для разрывных систем (1). Но для таких уравнений функция Ляпунова V(t,x) может не принадлежать .
Для функции (т.е. имеются непрерывные производныепервого порядка) определяются верхняя и нижняя производные в силу диф. включения (2):
При почти всех t производная существует и удовлетворяет включению (2). При этих t существует
(3)
Теорема 1.
Пусть в замкнутой области D () для всех - непустое, ограниченное, замкнутое, выпуклое множество и функция -непрерывна по t, x; и существуют функции , для которых.
Тогда:
1) Если в D, то решение включения (2) устойчиво.
2) Если, кроме того, существуют функции причем , , (),, то решение асимптотически устойчиво.
Известные доказательства этих утверждений для диф. уравнений [4] остаются справедливыми и для диф. включений; при этом для оценки сверху функции V(t, x(t)) используют соотношение (3).
Теорема 2.
Если выполнены условия теоремы 1, но с заменой , то решение слабо устойчиво в случае 1) и слабо асимптотически устойчиво в случае 2).
Доказательство теоремы 2 приведено в [17].
Рассмотрим теперь случай, когда функция Ляпунова , но удовлетворяет условию Липшица в окрестности каждой точки области D. Тогда для любой абсолютно непрерывной функции x(t), значит и для любого решения, сложная функция V(t, x(t)) абсолютно непрерывна и почти всюду имеет производную по t. Однако решение может в течение некоторого промежутка времени идти по линии или поверхности, на которой grad V не существует, и производную dV/dt, нельзя, как в случае , представить в виде
Для :
. (4)
В случае функции V(t, x), удовлетворяющей условию Липшица, верхнюю и нижнюю производные от функции V в силу включения (2) можно определить как sup и inf правой части (4) по всем . Тогда теоремы 1и 2 сохраняются.
Пример 3.
Если , то нельзя пренебрегать отысканием dV/dt на линиях поверхностях разрыва функции f(t, x) даже в случае доопределения А.
Но этого недостаточно для применения теоремы 1, т.к. производные разрывны на осях координат, т.е. там же, где разрывны правые части системы. На оси Ox при доопределении А: