Дифференциальные уравнения с разрывной правой частью
Рефераты >> Математика >> Дифференциальные уравнения с разрывной правой частью

S

Решение x(t) попадающее при на поверхность разрыва S, продолжается однозначно на значения и близкие к ; пересекая S решение удовлетворяет уравнению всюду, кроме точки пересечения, в которой решение не имеет производной (в первом примере S – это прямая t=0).

В другом случае, когда с обеих сторон поверхности разрыва S решения приближаются к S (траектории “стыкуются” – скользящий режим), это определение решения непригодно, т.к. ничего не говорит о том, как продолжится решение, попавшее на S (пример 2).

Необходимо поэтому было дать такое определение решения, которое охватило бы эти два основных случая и формулировалось бы независимо от расположения линий и поверхностей разрыва.

§2. Определения решения.

Рассмотрим уравнение или систему в векторной записи

, (1)

с кусочно-непрерывной функцией f в области G;, , M – множество (меры нуль) точек разрыва функции f.

Большинство известных определений решения уравнения (1) могут быть изложены следующим образом. Для каждой точки области G указывается множество в n-мерном пространстве. Если в точке (t,x) функция f непрерывна, то множество состоит из одной точки, совпадающей со значением функции f в этой точке. Если же -точка разрыва функции f, то множество задается тем или иным способом.

Определение2.Решением уравнения (1) называется решение дифференциального включения

, (2)

т.е. абсолютно непрерывная вектор-функция x(t), определенная на интервале или отрезке I, для которого почти всюду на I

.

Другими словами, решение дифференциального уравнения (1) определяется как функция, у которой производная может принимать любые значения из некоторого множества .

Иногда (2) называют диф. уравнением с многозначной правой частью. Функцию называют многозначной функцией, подчеркивая, что значение- множество. Если для всех (t, x) множество состоит из единственной точки, то (2) – обычное диф. уравнение. Функция называется однозначной в точке , если множество F состоит из единственной точки.

Одним из наиболее популярных определений решения разрывной системы является определение А.Ф. Филиппова.

А. Выпуклое доопределение.

Применимо, в частности, к системам с малым запаздыванием того или иного рода, а также к некоторым системам с сухим трением.

Для каждой точки пусть - наименьшее выпуклое замкнутое множество, содержащее все предельные значения вектор-функции, когда Решением уравнения (1) называется решение включения (2) с только что построенным . Т.к. - множество меры нуль, то при почти всех мера сечения множества плоскостью равна нулю. При таких множество определено для всех . В точках непрерывности функции множество состоит из одной точки и решение удовлетворяет уравнению (1) в обычном смысле. Если же точка лежит на границах сечений двух или нескольких областей , …, плоскостью , то множество есть отрезок, выпуклый многоугольник или многогранник с вершинами , , где

= .

Все точки (= 1, … , содержатся в , но не обязательно, чтобы все они являлись вершинами.

Определение 3.

Вектор-функция , определенная на интервале называется решением уравнения (1), если она абсолютно непрерывна и если при почти всех для любого вектор принадлежит наименьшему выпуклому замкнутому множеству (-мерного пространства), содержащему все значения вектор-функции , когда пробегает почти всю -окрестность точки в пространстве X (при фиксированном ), т.е. всю окрестность, кроме множества мера нуль.


Страница: