Геометрия в пространстве
Рефераты >> Математика >> Геометрия в пространстве

До сих пор мы, по существу, нигде не пользовались такими важными геометрическими понятиями, как расстояния и углы. Даже в нашем кубе нам достаточно было только того, что его грани- параллелограммы, равенства всех их сторон и углов на самом деле не требовалось. Чтобы иметь возможность изучать свойства куба и других пространственных фигур во всей полноте, нужны соответствующие определения. Прежде всего, расширим понятие перпендикулярности, известное из планиметрии.

Если прямая пересекает плоскость в этой плоскости, проходящей через точку Р, то говорят , что данные прямая и плоскость перпендикулярны.

Например, ясно, что ребро АА¹ нашего куба перпендикулярно основанию АВСD. Но как проверить, что это ребро действительно перпендикулярно любой прямой, лежащей в основе и проходящей через А? Оказывается, достаточно того, что АА¹ составляет прямые углы с двумя из них – АВ и АD: согласно признаку перпендикулярности прямой и плоскости,

· Если прямая l перпендикулярна двум пересекающимся прямым a и b, то она перпендикулярна плоскости, содержащей a и b.

Причём здесь не обязательно предполагать, что прямые a и b пересекают l: считают, что скрещивающиеся прямые перпендикулярны, если перпендикулярны параллельные им пря­мые, проходящие через произвольно взятую точку, в частности через точку пересечения l с плоскостью. Так что теперь можно сказать, что прямая, перпендикулярная плоскости, перпен­дикулярна любой лежащей в этой плоскости прямой. Справедлива такая теорема:

· Через данную точку в пространстве можно провести одну и только одну плоскость, перпендикулярную дан­ной прямой, а также одну и только одну прямую, перпендикулярную данной плоскости.

Параллельная проекция на плоскость вдоль перпендикулярной ей прямой называется ортогональной (т. е. прямоугольной) проекцией на данную плоскость. Обычно, когда говорят просто «проекция», имеют в виду именно ор­тогональную проекцию. Она обладает всеми общими свойствами параллельной проекции. Но у неё есть и специфические свойства, их можно использовать при решении задач о расстояниях и углах в пространстве.

Из признака перпендикулярности прямой и плоскости выводится очень простая, но важная теорема о трёх перпендикулярах (рис. 11):

· Подпись: αПодпись: a¹Подпись: lПодпись: Рис. 11

a

Наклонная a к плоскости перпендикулярна к прямой l в этой плоскости тогда, когда её проекция а¹ на плоскость перпендикулярна l.

Наклонной к плоскости называют любую пересекающую её, но не перпендикулярную ей прямую. Оба условия в этой теореме равно­сильны тому, что плоскость, содержащая а и а', перпендикулярна прямой /.

Применим обе теоремы к кубу (рис. 11). Проекция АС его диагонали АC¹ на основание перпендикулярна диагонали основания BD; по теореме о трёх перпендикулярах, и сама диаго­наль АС¹ перпендикулярна BD. По такой же причине перпендикулярны АС¹ и А¹В. Отсюда следует, что диагональ перпендикулярна «тре­угольному сечению» A¹BD.

В стереометрии помимо обычных плоских

Подпись: Рис. 12

D

C

B

A

углов приходится иметь дело ещё с тремя ви­дами углов. Угол между скрещи-вающимися прямыми, по определению, равен углу между пе­ресекающимися прямыми, которые им парал­лельны. Угол между прямой а и плоскостью о. равен углу между прямой а и её проекцией а' на плоскость (рис. 10), а если прямая и пло­скость перпендикулярны, его принимают рав­ным 90°. Это наименьший из углов между пря­мой а и любой прямой в плоскости а. Угол между пересекающимися плоскостями измеря­ется углом между перпендикулярами, проведён­ными в этих плоскостях к линии их пересече­ния (рис. 13). Все названные углы принимают значения в промежутке от 0 Подпись: Рис. 14Подпись: Рис. 13до 90°.


Страница: