Реконструкция волоконно-оптической линии связи
Рефераты >> Коммуникации и связь >> Реконструкция волоконно-оптической линии связи

В одномодовом оптическом волокне со смещенной дисперсией (DSF) (рис. 2.3) длина волны, на которой дисперсия обращается в ноль, - длина волны нулевой дисперсии λ0 - смеще­на в окно прозрачности 1550 нм. Такое смещение достигается благодаря специальному профилю показате­ля преломления волокна. Таким образом, в волокне со смещенной дисперсией реализуются наилучшие характеристики, как по минимуму дисперсии, так и по минимуму по­терь. Поэтому такое волокно лучше подходит для строительства протяженных сегментов с расстоянием между ретрансляторами до 100 и более км. Разумеется, единственная рабочая длина волны берется близкой к: 1550 нм.

Одномодовое оптическое волокно с ненулевой смещенной дисперсией NZDSF в отличие от DSF оп­тимизировано для передачи не одной длины волны, а сразу нескольких длин волн (мультип­лексного волнового сигнала) и наиболее эффективно может использоваться при построении магистралей «полностью оптических сетей» - сетей, на узлах которых не происходит оптоэлектронного преобразования при распространении оптического сигнала.

Оптимизация трех перечисленных типов одномодовых ОВ совершенно не означает, что они всегда должны использоваться исключительно под определенные задачи: SF - пере­дача сигнала на длине волны 1310 нм, DSF - передача сигнала на длине волны 1550 нм, NZDSF - передача мультиплексного сигнала в окне 1530-1560 нм. Так, например, мультип­лексный сигнал в окне 1530-1560 нм можно передавать и по стандартному ступенчатому одномодовому волокну SF [5]. Однако длина безретрансляционного участка при использовании во­локна SF будет меньше, чем при использовании NZDSF, или иначе потребуется очень узкая полоса спектрального излучения лазерных передатчиков для уменьшения результирующей хроматической дисперсии. Максимальное допустимое расстояние определяется технически­ми характеристиками как самого волокна (затуханием, дисперсией), так и приемо­передающего оборудования (мощностью, частотой, спектральным уширением излучения пе­редатчика, чувствительностью приемника).

В ВОЛС наиболее широко используются следующие стандарты волокон:

- многомодовое градиентное волокно 50/125;

- многомодовое градиентное волокно 62,5/125;

- одномодовое ступенчатое волокно SF (волокно с несмещенной дисперсией или стан­дартное волокно) 8-10/125;

- одномодовое волокно со смещенной дисперсией DSF 8-10/125;

- одномодовое волокно с ненулевой смещенной дисперсией NZDSF (по профилю показа­теля преломления это волокно схоже с предыдущим типом волокна).

2.6. Константа распространения и фазовая скорость

Волновое число k можно рассматривать как вектор, направление которого совпадает с направлением распространения света в объемных средах. Этот вектор называется волновым вектором. В среде с показателем преломления величина волнового вектора равна . В случае распространения света внутри волновода направление распространения света совпадает с направлением проекции β волнового вектора k, на ось волновода:

(2.6.1)

где - угол, дополняющий угол i до 90 (или угол между лучом и осью, как показано на рис. 2.4), β называется константой распространения и играет такую же роль в волноводе как волновое число k в свободном пространстве [6]. Т.к. , то в соответствии с (ф. 2.6.1) и i зависят от длины волны.

Рис. 2.4. Волновой вектор и константа распространения

Угол падения изменяется между и π/2. Следовательно:

(2.6.2)

Таким образом, величина константы распространения внутри волновода всегда лежит между значениями волновых чисел плоской световой волны в материале сердцевины и оболочки. Если учесть, что , то можно переписать это соотношение на языке фазовых скоростей:

(2.6.3)

Фазовые скорости распространения мод заключены между фазовыми скоростями волн в двух объемных материалах.

Скорость распространения светового сигнала или групповая скорость - это скорость распространения огибающей светового импульса. В общем случае групповая скорость u не равна фазовой скорости. Различие фазовых скоростей мод приводит к искажению входного пучка света по мере его распространения в волокне.

В волокне с параболическим градиентным показателем преломления наклонные лучи распространяются по криволинейной траектории, которая, естественно, длиннее, чем путь распространения аксиального луча. Однако из-за уменьшения показателя преломления по мере удаления от оси волокна, скорость распространения составляющих светового сигнала при приближении к оболочке оптического волокна возрастает, так что в результате этого время распространения составляющих по ОВ оказывается примерно одинаковым. Таким образом, дисперсия или изменение времени распространения различных мод, сводится к минимуму, а ширина полосы пропускания волокна увеличивается. Точный расчет показывает, что разброс групповых скоростей различных мод в таком волокне существенно меньше, чем в волокне со ступенчатым профилем показателя преломления. Оптические волокна, которые могут поддерживать распространение только моды самого низкого порядка, называются одномодовыми.

Таким образом, каждая мода, распространяющаяся в ОВ, характеризуется постоянным по длине световода распределением интенсивности в поперечном сечении, постоянной распространения β, а также фазовой v и групповой u скоростями распространения вдоль оптической оси, которые различны для разных мод. Из-за различия фазовых скоростей мод волновой фронт и распределение поля в поперечном сечении изменяются вдоль оси волокна. Из-за различия групповых скоростей мод световые импульсы расширяются, и это явление называется межмодовой дисперсией.

В одномодовом волокне существует только одна мода распространения, поэтому такое волокно характеризуется постоянным распределением поля в поперечном сечении, в нем отсутствует межмодовая дисперсия, и оно может передавать излучение с очень широкой полосой модуляции, ограниченной только другими видами дисперсии (см. п. 3.2).

Глава 3. Процессы, происходящие в оптическом волокне, и их влияние на скорость и дальность передачи информации


Страница: