Реконструкция волоконно-оптической линии связиРефераты >> Коммуникации и связь >> Реконструкция волоконно-оптической линии связи
Один из недостатков использования волокна DCF для компенсации дисперсии заключается в волновой зависимости хроматической дисперсии D(l). В линейном приближении эту зависимость описывает параметр S - наклон дисперсионной кривой. Компенсация дисперсии, например, статическим методом на одной длине волны приведет к неточной компенсации на других длинах волн в системах DWDM.
Для количественного сравнения качества компенсации дисперсии часто используют понятие добротности компенсирующего волокна [7]. Добротностью компенсирующего волокна называется отношение абсолютного значения дисперсии, выраженного в пс/нм/км к затуханию, выраженному в дБ/км. Добротность не единственный показатель качества компенсирующего дисперсию волокна. Необходимо учитывать, в частности, насколько высока чувствительность к потерям на изгибах. Поэтому, при использовании значения добротности для сравнения различных видов оптических волокон нужно стремиться к тому, чтобы измерять добротность в тех условиях, в которых ОВ будет реально работать.
Оптические волокна DCF с высоким показателем добротности используются как дополнительные элементы линии связи, они увеличивают потери в линии, примерно, на 30%. Так, для пролета длиной 300 км может потребоваться около 50 км волокна с компенсацией дисперсии, при этом дополнительные потери мощности составят 18 дБ.
Для компенсации дисперсии применяется также новый тип ОВ, названного оптическим волокном с обратной дисперсией (RDF). Волокно RDF обладает коэффициентом дисперсии примерно равным по величине и противоположным по знаку соответствующему параметру стандартного одномодового волокна. Измеренное значение потерь на изгиб в RDF волокне оказалось меньше, чем в стандартном ОВ. Это позволяет изготавливать оптические кабели с RDF волокном. Кабель на основе RDF волокна соединяется с ОК на основе стандартного ОВ примерно той же длины. Дисперсионный коэффициент такого соединения не превышает ±0,5пс/нм/км в полосе длин волн 1530нм - 1564нм. Поскольку затухание RDF волокна 0,25 дБ/км при затухании стандартного волокна 0,2 дБ/км, среднее затухание в линии равно 0,225 дБ/км. Еще одним преимуществом RDF волокна является меньшая по сравнению с DCF нелинейность.
Рассмотренные выше различные типы компенсирующих дисперсию волокон позволяют достаточно хорошо компенсировать дисперсию и наклон дисперсионной зависимости стандартного оптического волокна (SMF).
В настоящее время в большинстве модулей компенсации дисперсии используется DC волокно, т.к. такие модули не потребляют мощность, имеют малую стоимость и удобны в применении (обычно размещается на выходе оптического усилителя).
4.1.2. Компенсаторы на основе брэгговских решеток с переменным периодом.
Компенсаторы на основе брэгговских решеток с переменным периодом привлекают в последнее время большое внимание исследователей своими большими потенциальными возможностями. Волоконная брэгговская решетка FBG (fiber Bragg grating) - оптический элемент, основанный на периодическом изменении показателя преломления сердцевины или оболочки оптического волокна. Принцип работы компенсаторов на основе брэгговских решеток с переменным периодом поясняет рис. 4.3. Он основан на том, что компоненты с различной длиной волны отражаются от различных участков решетки и, таким образом, проходят различный путь. Решетки записываются (прочерчиваются) в волокне с использованием фоточувствительности определенных типов оптических волокон. Обычное кремниевое волокно при добавлении примеси германия становится чрезвычайно фоточувствительным. Подвергая это волокно воздействию ультрафиолетового света, можно вызвать изменения показателя преломления в сердцевине волокна. В таком волокне решетка может быть создана с помощью облучения волокна двумя интерферирующими ультрафиолетовыми пучками. Это заставляет интенсивность излучения изменяться периодически по длине волокна. Там, где интенсивность высокая, показатель преломления увеличивается, а где она мала, показатель остается без изменений [4].
Фазовый сдвиг в компенсаторах на волоконных решетках зависит от модуляции интервалов между зонами с повышенным показателем преломления в решетке. Если эти интервалы возрастают вдоль волоконной решетки, то длинноволновая часть сигнала проникнет глубже в решетку, прежде чем полностью отразится. Это приводит к задержке длинноволновых составляющих относительно коротких. Если расстояние между коротковолновой и длинноволновой частями решетки составляет 1 мм, то длинноволновые составляющие будут задержаны приблизительно на 10 пс.
Так как период решетки изменяется вдоль волокна, то и условия отражения для различных спектральных компонент выполняются на разных участках. Для компенсации положительной дисперсии стандартного одномодового волокна используются решетки, а которых коротковолновые составляющие световой волны отражаются в точке, расположенной дальше от начала устройства, чем точка, в которой отражаются длинноволновые составляющие. Тем самым коротковолновые составляющие задерживаются относительно длинноволновых составляющих.
В идеале желательно получить решетку, которая вносит большую дисперсию для широкого диапазона длин волн для применения в системах передачи WDM и DWDM. Максимальная задержка, которая может быть получена с помощью решетки, составляет 1 нс. Эта задержка соответствует произведению дисперсии, вносимой решеткой и длины волны, на которой она возникает. Следовательно, можно получить решетки, которые вносят большую дисперсию для малых диапазонов волн, 1000 пс/нм в диапазоне 1 нм, или малую дисперсию в больших диапазонах волн, например, 100 пс/нм в диапазоне 10 нм. Заметим, что 100 км стандартного волокна вносят общую дисперсию 1700 пс/нм. Поэтому на практике для того, чтобы использовать решетки с линейно изменяющемся периодом для оптического волокна длиной несколько сотен километров, они должны быть очень узкодиапазонными, т.е. необходимо использовать разные решетки для различных длин волн.
Поэтому решетки с линейно изменяющейся постоянной идеально подходят для компенсации отдельных длин волн. Напротив, компенсирующее волокно (DCF) лучше подходит для компенсации широкого диапазона длин волн в системах WDM и DWDM. Однако, по сравнению с решетками с линейно изменяющейся постоянной, DCF вносят большие потери и дополнительные задержки из-за увеличивающихся нелинейностей.