Химический состав материалов исследование влияния на качество потребительских товаров
Физические свойства жиров неодинаковы. В зависимости от жирнокислотного состава, жиры при комнатной температуре могут иметь жидкую, мазеобразную или твёрдую консистенцию. Температура застывания подсолнечного масла от – 16 до – 18ºС, оливкового— от — 2 до—4°С;. хлопкового — от – 1 до – 6 º С. Твердые жиры представляют, собой сложную смесь различных триглицеридов, поэтому они не обладают точно выраженной точкой управления, а переход их в жидкое состояние совершается в определенном температурном интервале. Температурой плавления жира считают температуру его полного осветления. Температура застывания жира на несколько градусов ниже температуры плавления. Это свойство жиров имеет важное значение в кулинарии: жир горячего блюда в расплавленном виде усваивается организмом человека легче, чем в застывшем состоянии.
При комнатной температуре жиры нелетучи, так как имеют высокий молекулярный вес (860-950), но в вакууме ( при остаточном давлении меньше 10-3 мм рт. ст.) они кипят и разделяются. на фракции, посредством молекулярной дисциплины. При обычном атмосферном давлении нагревание жиров 200ºС не приводит к истинному кипению, при 240-250ºС начинается химическое разложение жиров с образованием летучих веществ в виде дыма, газов, паров; выделяющий при разложении жиров глицерин превращается в непредельный альдегид акролеин, обладающий едким запахом,раздражающий слизистые оболочки, носами и горла, вызывающий слезотечение.
Температура дымообразования зависит от вила и химического состава жира: коровьего масла -208°С, комбижиров— 210°С; свиного жира—221° С; гидрожира—230°С; хлопкового жира—233°С. Чем больше в жирах содержится свободных жирных кислот, тем ниже температура дымообразования.
При смешивании жидких жиров с большим количеством воды незначительная часть их переходит в раствор, основная же масса жира образует неустойчивую быстрорасслаивающуюся водную эмульсию. Для получения прочных прямых эмульсий (масло/вода) и обратных (вода/масло) необходимо вводить эмульгаторы. Растворимость воды в жире при 100°С не выше 1%.
Химические свойства жиров проявляются в реакциях гидролиза, окисления и гидрогенизации. Ускорение или замедление этих реакций обусловлено влиянием находящихся в природных жирах сопутствующих веществ, которые иногда оказывают специфическое воздействие на характер происходящего процесса и сами претерпевают различные превращения.
Гидролиз жиров, т.е. расщепление триглицерида на глицерин и жирные кислоты, легко протекает под действием воды и высокой температуры, щелочей, кислот и ферментов.
Реакция гидролиза, триглицеридов происходит чаще всего бимолекулярно, т.е. на одну молекулу триглицерида действует одна молекула воды, при этом образуется диглицерид, который затем расщепляется до моноглицерида, а в дальнейшем образуются глицерин и жирные кислоты. Нагрев до 200ºС и повышение давления, присутствие катализаторов (СаО, МġО, Zn) и небольших количеств кислот, а также наличие щелочей ускоряют гидролиз (кислоты катализируют гидролиз водородными, а щелочи—гидроксильными ионами).
Неферментативный гидролиз протекает за счет растворенной в жире воды, т. е. происходит в жировой фазе, где растворенная вода вступает в реакцию. Ничтожно малая растворимость воды в жирах при комнатной температуре обеспечивает незначительную степень гидролиза жиров и масел. Сопутствующие вещества в жирах ускоряют их гидролиз как специфичностью воздействия, так и большей способностью связывать влагу. Высокие температуры катализируют гидролиз за счет тепловой активации, а также повышения, растворимости воды в жире. При кулинарной обработке в частности при длительном кипячении, триглицерида могут гидролизоваться; получающиеся жирные кислоты образуют эмульсию, что придает бульонам мутность. Чтобы бульон не приобретал неприятного вкуса и запаха, необходимо своевременно удалять с его поверхности жир.
Ферментативный гидролиз жиров происходит под действием ферментов во время хранения или при усвоении их организмом. Такой гидролиз протекает исключительно на поверхности соприкосновения жира и воды, поэтому чем вышестепень дисперсности эмульсии, тем выше скорость гидролиза. Усвояемость жира, таким образом, зависит не только от температуры плавления (чем ближе температура плавления жира к температуре организма человека, тем выше его усвояемость), но и от степени дисперсности жировой эмульсии, молока, сливок, сметаны, мороженого, коровьего масла, кисломолочных продуктов, маргарина находится в виде хорошо диспергированной эмульсии, поэтому сравнительно хорошо и легко усваивается. Для повышения усвояемости жиров в кулинарии приготовляют жировые эмульсии —соусы майонез и голландский, заправки и др.
Окисление жиров — процесс химического взаимодействия кислорода и остатков непредельных жирных кислот. Процесс окисления является одним из основных факторов снижения пищевой ценности жиров. Окисление действии атмосферного кислорода называется: автоокисление.
Первая стадия автоокисления — индукционный период, когда окислительные превращения в жирах практически не обнаруживаются. Длительность индукционного периода жиров обусловливается их жирнокислотным составом, составом и свойствами сопутствующих веществ, способами их выделения и условиями хранения. Устойчивость различных жиров и масел к окислению характеризуется сравнительной длительностью их индукционных периодов.
На второй стадии автоокисления происходят реакции, ведущие к образованию перекисных соединений.
На третьей стадии протекают вторичные реакции перекисных соединений, в частности окислительный распад и уплотнения жирнокислотных остатков глицеридов, в жирах накапливаются продукты превращения гидроперекисей - альдегиды, кетоны, полимерные соединения, свободные низкомолекулярные жирные кислоты, которые могут резко изменить вкус и запах жиров и масел, существенно снизить их пищевые достоинства.
Липиды
К липоидам, встречающимся в тканях в свободном состоянии и в виде липопротеидов, относят фосфатиды, стерины, цереброзиды и воска.
Фосфатиды — сложные эфиры глицерина с жирными кислотами и фосфорной кислотой, которая, в свою очередь, соединена с азотистым основанием. К фосфатидам относят лецитин, кефалин, серинфосфатиды, ацетальфосфатиды, инозит-фосфатиды и сфингомиелины.
Наиболее изученные и часто встречающиеся фосфатиды – лецитин, кефалин, серинфосфатиды – в больших количествах входят в состав нервной ткани и внутриклеточных структур.
Лецитин — бесцветное вещество, быстро окисляющееся на воздухе, хорошо растворимое в этиловом спирте и других органических растворителях, кроме ацетона с водой образует стойкую эмульсию. Благодаря холину, связанному с фосфорной кислотой, лецитин обладает щелочными свойствами. Содержание лецитина в растительных организмах — 0,05 – 1,5%, в яичном желтке— 9—10%, в молочном жире – 1,2 – 1,4%, в мозговом веществе— до 6%. Лецитин играет важную роль в процессе переноса жира из одной ткани в другую.