Математическая теория обработки результатов экспериментов
Рефераты >> Технология >> Математическая теория обработки результатов экспериментов

Желательно провести проверку гипотезы так, чтобы свести к минимуму вероятности обоих ошибок. Однако при данном числе испытаний n в общем случае невозможно одновременно обе эти вероятности сделать как угодно малыми. Поэтому наиболее рационально выбирать критическую область следующим образом: при заданном числе испытаний n устанавливается граница для вероятности ошибки первого рода и при этом выбирается та критическая область х1, для которой вероятность ошибки второго рода минимальна.

2.5. Вероятности ошибок первого и второго рода

Рассмотрим станок, который может работать только в одном из двух состояний. Если он работает в налаженном режиме, то для интересующего нас признака качества, например, длины или диаметра заготовки, имеет место нормальное распределение при работе как в налаженном так и в разлаженном режиме. Оба режима отличаются только уровнем настройки процесса по математическому ожиданию ( М(х) = 10 и 11, соответственно в налаженном и разлаженном режиме ), в то время как дисперсии в обоих случаях составляют s2 = 4.

Проверить нужно нулевую гипотезу, в соответствии с которой М(х) = 10, против альтернативы ( в данном случае единственной ) М(х) = 11. Конкурирующую гипотезу обозначим Н1. Тогда Но: М(х) = 10; Н1: М(х) = 11.

Необходимо по результатам выборки определить в каком из состояний работает станок. Примем объем выборки n из потенциально бесконечной генеральной совокупности. В качестве контрольной величины возьмем выборочное среднее Хn. На рис. 9 изображены плотности распределения Хn для n = 25 и n = 4.

Для формулировки критерия необходимо разделить область изменения контрольной величины (х) на критическую область отклонения гипотезы Но ( принятия Н1 ) и область принятия гипотезы Но. Для этого необходимо выбрать число К, такое, что 10 < К < 11, и интервал ( -¥; К ] рассматривать как область принятия гипотезы Но, а интервал [ К; ¥ ) - как область отклонения гипотезы Но. По рис. 9 видно, что каждая реализация Х25 или Х4 возможна при верности любой из двух гипотез, но с различной вероятностью. На рис. 9 указаны вероятности совершения ошибки первого

Рис. 9. Плотности распределения двух гипотез при различном

объеме выборки и одинаковой дисперсии

рода a ( отклонения верной гипотезы Но ) и второго рода b ( принятие гипотезы Но, когда она не верна ). По рис. 9 также видно, что увеличение n ведет к уменьшению дисперсии распределения х и тем самым - к одновременному уменьшению вероятностей a и b. В соответствии с рис. 9 можно записать:

;

.

Эти два уравнения содержат четыре величины a, b, К, n. Задав две из четырех величин, можно определить две другие.

Например, при n = 25 и К = 10,4 определим:

;

.

Если задаться величинами a и b, то можно определить величины К, n.

2.6. Проверка гипотезы вида закона распределения вероятностей

При проверке эксперимента закон распределения вероятностей случайных величин неизвестен и можно лишь предположительно судить о его виде . Выборочные оценки параметров распределения несут в себе случайные ошибки, искажающие истинный характер распределения. Поэтому после получения эмпирического распределения производится подбор теоретического закона распределения, пригодного для описания вероятностных свойств изучаемой случайной величины. Критерии подбора ( проверки гипотезы соответствия ) называют в статистике критериями согласия. Все они основаны на выборе допустимой меры расхождения между теоретическим распределением и выборочными данными.

Общую процедуру проверки гипотезы закона распределения можно представить в следующей последовательности:

По опытным данным строится эмпирическая кривая распределения вероятностей;

Определяются параметры эмпирического распределения ( в соответствии с его видом );

Выдвигается одна или несколько гипотез о функции плотности исследуемой случайной величины, исходя из внешнего вида эмпирической кривой, значений ее параметров, технических факторов, влияющих на ее вид;

Эмпирическая кривая выравнивается по одной или нескольким теоретическим кривым;

Проводится сравнение по одному или нескольким критериям согласия;

Выбирается теоретическая функция, дающая наилучшее согласование.

Поясним п. 4; 5. Определив по эмпирическим данным параметры распределения, подставляют их в теоретическую кривую закона распределения и рассчитывают вероятность середин интервалов эмпирического распределения. Умножив значение полученной вероятности на общее число опытов, получают теоретическое значение частот случайной величины, которые и определяют ²выровненную² кривую. Теперь можно найти вероятность того, что эмпирическая кривая соответствует выбранной теоретической, выбрав вероятность согласия ( уровень значимости ). Если результат расхождения не выйдет за принятый уровень значимости, то считают, что эмпирическое распределение согласуется с теоретическим. Если сравнение осуществляется с несколькими теоретическими законами, то окончательно принимать тот, который дает лучшее соответствие.

Чаще всего в качестве критериев согласия принимают критерий Пирсона ( c2 ) и критерий Колмогорова - Смирнова ( К - С - критерий ).

Критерий c2 является наиболее состоятельным при большом числе наблюдений. Он почти всегда опровергает неверную гипотезу, обеспечивает минимальную ошибку в принятии неверной гипотезы по сравнению

с другими критериями.

c2 = ,

где mj - наблюдаемая частота случайного события;

m*j - ожидаемая по принятому теоретическому закону распределения;

К - число интервалов случайной величины.

Затем определяется число степеней свободы l:

l = К - r - 1;

где К - число интервалов случайной величины;

r - число параметров теоретической функции распределения.

К - С - критерий лучше всего использовать в случае, если теоретические значения параметров распределения известны. При неизвестных параметрах его можно использовать, но он дает несколько завышенные результаты. При использовании этого критерия определяется величина

,

где

mнj, m*нj - соответственно, накопленные наблюдаемые и ожидаемые

(теоретические) частоты;

n - число проведенных опытов.

То есть, в данном случае оценивается только максимальное отклонение накопленной частоты случайного события, возникающее в одном из диапазонов изменения случайной величины. Полученное значение коэффициента сравнивается с табличным для числа степеней свободы опыта и принятого уровня значимости результата. Если табличное значение коэффициента больше, то гипотеза о принятом законе распределения не отвергается.

Контрольные вопросы


Страница: