Математическая теория обработки результатов экспериментовРефераты >> Технология >> Математическая теория обработки результатов экспериментов
Используя понятия интегральной функции распределения и определенного интеграла можно записать
¦ (x) = F¢ (x) или F (x) = p (x1 < X < x2) = .
Это соотношение имеет простое геометрическое толкование (рис. 5).
Если определяет заштрихованную область в соответствующих пределах, то
p (х < Х < х + Dх) » ¦ (х) Dх.
Рис. 5. Геометрический смысл дифференциальной функции распределения
Из свойств интегрального распределения следует
.
Зная дифференциальный закон распределения можно определить интегральный закон распределения
F (x) = .
Числовые характеристики случайных величин, заданных своими распределениями
Основными характеристиками случайной величины, заданной своими распределениями, является математическое ожидание ( или среднее значение ) и дисперсия.
Математическое ожидание случайной величины является центром ее распределения. Дисперсия характеризует отклонение случайной величины от ее среднего значения.
Если Х дискретная случайная величина, значения хi которой принимают с вероятностью pi, так, что , то математическое ожидание М (Х) случайной величины Х определяется равенством
M (X) = ,
т.е. суммой произведений всех ее возможных значений на соответствующие вероятности.
Математическим ожиданием непрерывной случайной величины является аналог его дискретного выражения
M (X) = .
Действительно, все значения в интервале (х; х + Dх) можно считать примерно равными х, а вероятность таких значений равна ¦ (х) dx (см. ранее). Поэтому значения хi дискретного распределения заменяются х, а вероятности pi - на ¦ (х) dx, а сумма заменяется интегралом.
Дисперсией или рассеянием случайной величины Х называется математическое ожидание квадрата разности случайной величины и ее математического ожидания.
D (Х) = М [Х - М (Х)]2 = М (Х - х)2 = s2 (х)
Если случайная величина Х дискретна и принимает значения хi с вероятностями pi, то случайная величина (Х - х)2 принимает значения (хi - х)2 с вероятностями Рi. Поэтому для дискретной случайной величины имеем
D (X) = .
Аналогично для непрерывной случайной величины получаем
D (X) = .
Чем меньше величина дисперсии, тем лучше значения случайной величины характеризуются ее математическим ожиданием.
Основные дискретные и непрерывные законы распределения
Как отмечалось ранее, очень часто случайная величина распределена по нормальному закону. Но существуют и другие распределения, имеющие практическое значение. Рассмотрим некоторые из них по условиям возникновения и основным параметрам их характеризующим.
Равномерное распределение вероятностей.
Пусть плотность вероятности А равна нулю всюду, кроме интервала (a; b), на котором она постоянна (рис. 6). Тогда можно записать
p (a < X < b) = A = .
Рис. 6. Дифференциальный и интегральный законы
равномерного распределения
Тогда дифференциальный закон равномерного распределения определяется
¦ (x) =
Интегральный закон распределения
F (x) = .
При х ³ b имеем
F (x) =
Таким образом интегральный закон равномерного распределения задается (рис. 6)
F (x) =
Основные характеристики распределения
М (X) = ;
D(X) =
=
=
.
Биноминальное распределение
Пусть при некотором испытании событие А может наступить или не произойти (А). Обозначим вероятность А через р, а А через q = 1 -р ( других итогов испытания нет ). Тогда исходами двух последовательных независимых испытаний и их вероятностью будут:
АА - р2; АА - рq; АА - qр; АА - q2.
Отсюда видно, что двукратное появление события А равно р2, вероятность однократного появления - 2 рq, а вероятность того, что А не наступит ни разу - q2. Эти результаты единственно возможные и поэтому
.
Это рассуждение можно перенести на любое число испытаний.
Например, при трех испытаниях получим
.
Подсчитаем вероятность того, что при n испытаниях событие А появится m раз. Это может произойти, например, в последовательности
Ясно, что вероятность равна рmqn-m. Но m событий А может быть и в другом сочетании. Число всех возможных сочетаний из n элементов по m (количество событий А) равно числу сочетаний . Используя теорему сложения вероятностей получаем общую вероятность Рm,n наступления m событий А из n испытаний
Pm,n =
= .
Из этой формулы видно, что вероятности Рm,n для различного исхода испытаний (появление или не появление определенного результата А) определяется
pn + npn-1q + .
Коэффициенты перед вероятностями р, q являются биноминальными коэффициентами, а общая вероятность представляет слагаемые в разложении бинома ( р + q )n. Поэтому закон распределения случайной величины Х, в котором вероятность наступления событий А определяется коэффициентами бинома, называется биноминальным распределением дискретной случайной величины. Этот закон может быть задан в виде таблицы 1.
Таблица 1
Биноминальный закон распределения
хi |
0 |
1 |
2 |
. |
m |
. |
n | |
pi |
qn |
npqn-1 |
|
. |
|
. |
pn |