Математическая теория обработки результатов экспериментовРефераты >> Технология >> Математическая теория обработки результатов экспериментов
1.3. Типы ошибок измерения
Кроме приборной погрешности измерения (определяемой методом измерения) существуют и другие, которые можно разделить на три типа:
1. Систематические погрешности обуславливаются постоянно действующими факторами. Например, смещение начальной точки отсчета, влияние нагревания тел на их удлинение, износ режущего лезвия и т.п. Систематические ошибки выявляют при соответствующей тарировке приборов и потому они могут быть учтены при обработке результатов измерений.
2. Случайные ошибки содержат в своей основе много различных причин, каждая из которых не проявляет себя отчетливо. Случайную ошибку можно рассматривать как суммарный эффект действия многих факторов. Поэтому случайные ошибки при многократных измерениях получаются различными как по величине, так и по знаку. Их невозможно учесть как систематические, но можно учесть их влияние на оценку истинного значения измеряемой величины. Анализ случайных ошибок является важнейшим разделом математической обработки экспериментальных данных.
3. Грубые ошибки (промахи) появляются вследствие неправильного отсчета по шкале, неправильной записи, неверной установки условий эксперимента и т.п. Они легко выявляются при повторном проведении опытов.
В дальнейшем будем считать, что систематические и грубые ошибки из результатов эксперимента исключены.
1.4. Свойства случайных ошибок
Случайные ошибки бывают как положительные, так и отрицательные разной величины, не превосходящей определенного предела. Если обозначить через Х истинное значение измеряемой величины, а результат первого измерения - а1, то разность
Х - а1 = х1 или а1 - Х = х1
называют истинной абсолютной ошибкой одного измерения. Одновременно она является случайной (при исключении систематических и грубых ошибок).
Если измерения провести многократно в одних и тех же условиях, то результаты отдельных измерений одинаково надежны. Такую совокупность измерений а1, а2 .аn называют равноточными измерениями. Если проанализировать достаточно большую серию равноточных измерений и соответствующих случайных ошибок измерений, то можно выделить 4 свойства случайных ошибок:
1. Число положительных ошибок почти равно числу отрицательных;
2. Мелкие ошибки встречаются чаще, чем крупные;
Величина наиболее крупных ошибок не превосходит некоторого определенного предела, зависящего от точности измерения. Самую большую ошибку в ряду равноточных измерений называют предельной ошибкой;
4. Частные от деления алгебраической суммы всех случайных ошибок на их общее близко к нулю, т.е.
.
На основе указанных свойств при учете некоторых допущений математически достаточно строго выводится закон распределения ошибок, описываемый следующей функцией:
,
где s - дисперсия измерений (см. ниже);
е - основание натуральных логарифмов;
х - истинная абсолютная ошибка измерений.
Иначе эту зависимость называют формулой случайных ошибок, формулой Гаусса. На рис.1 приведены кривые Гаусса с различной величиной s.
Рис. 1. Кривая случайных ошибок
Закон распределения случайных ошибок является основным в математической теории погрешностей. Иначе его называют нормальным законом распределения. Особое значение в пользу широкого использования закона Гаусса имеет следующее обстоятельство: если суммарная ошибка измерения появляется в результате совместного действия ряда причин, каждая их которых вносит малую долю в общую ошибку (т.е. нет доминирующих причин), то по какому бы закону не были распределены ошибки, вызываемые каждой из причин, результат их совместного действия приведет
к нормальному распределению ошибок. Эта закономерность является следствием так называемой центральной предельной теоремы Ляпунова и хорошо соотносится с введенным понятием случайной ошибки.
Наряду с нормальным законом распределения ошибок могут встречаться и другие.
1.5. Наиболее вероятное значение измеряемой величины
Допустим, что для определения истинного значения Х измеряемой величины было сделано n равноточных измерений с результатами а1, а2 .аn. Естественно, что ряд этих чисел будет больше Х, другие меньше Х и неясно, какое из этих чисел ближе всего подходит к Х.
Представим результаты измерений в виде очевидных равенств:
а1 = Х - Dх1; а2 = Х - Dх2; . ; аn = Х - Dхn.
Естественно, что истинные абсолютные ошибки Dхi могут принимать как положительные, так и отрицательные значения.
Суммируя левые и правые стороны равенств получим
.
Поделим обе части равенства на число измерений n и получим
.
Величина является среднеарифметическим величины Х. Если число n достаточно велико ( при n®¥), то согласно четвертому свойству случайных ошибок
.
Это же видно и по кривой Гаусса (рис. 1), где всякой положительной погрешности соответствует равная ей отрицательная.
Из изложенного следует, что
Х = а при n ® ¥,
т.е. при бесконечном числе измерений истинное значение измеряемой величины равно среднеарифметическому значению результатов всех измерений. При ограниченном числе измерений истинное значение будет отличаться от среднеарифметического и необходимо оценить величину этого расхождения: Х = а ± Dх.
Следует еще раз подчеркнуть, что среднеарифметическое значение, принимаемое за истинное значение измеряемой величины, является наиболее вероятным значением. Среди значений аi могут оказаться значения, которые в действительности ближе к истинному значению.
Отклонение Dх вероятнейшего значения а от его истинного значения Х называют истинной абсолютной ошибкой.
1.6. Оценка точности измерений
Для ряда равноточных измерений а1, а2 .аn определим его среднеарифметическое значение а и составим разности (а - а1), (а - а2), ., (а - аn).
Каждую из этих разностей называют вероятнейшей ошибкой отдельного измерения (Vi). Вероятнейшие ошибки, как и истинные ошибки Dхi = (Х - аi), бывают положительные и отрицательные, нулевые. Рассмотрим т.е. алгебраическая сумма вероятнейших ошибок равна нулю при любом числе измерений. Истинные случайные ошибки таким свойством не обладают.
Вероятнейшие ошибки Vi лежат в основе математической обработки результатов измерений: именно по ним вычисляют предельную абсолютную ошибку Dаi среднеарифметического а и тем самым оценивают точность результата измерений.
Средняя истинная случайная ошибка (иначе - среднее отклонение отдельного измерения) определяется выражением (Dх1+Dх2+ .+Dхn)/n.
Величина [(Dх1)2+(Dх2)2+ .+(Dхn)2]/n представляет средний квадрат случайной ошибки или дисперсию S2 выборки (при ограниченном n) или генеральной совокупности s2 (при бесконечном n). Средняя квадратичная ошибка отдельного измерения S = является лучшим критерием точности, чем средняя случайная ошибка, т.к. не происходит компенсации положительных и отрицательных ошибок Dхi и сильнее учитывается действие крупных ошибок.