Математическая теория обработки результатов экспериментов
Рефераты >> Технология >> Математическая теория обработки результатов экспериментов

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0

Рис. 11. Функциональная шкала y = x2

С помощью функциональных шкал графики многих функций могут быть преобразованы к прямолинейному виду.

Например, уравнение параболы y = x2. Если на оси OY нанести равномерную шкалу, а на оси OX1 шкалу квадратов х1 = х2, то получится сетка, где уравнение параболы имеет изображение прямой линии ( y = x1 ),

проходящей через начало координат.

Особенно часто используются различные логарифмические функции, с помощью которых можно ²выпрямлять² графики степенных и показательных функций. Например, y = aebx; lg y = (b lg е) х + lg a. Полагая lg y = y1, lg a = A, b lg e = B запишем исходное уравнение в виде y1 = А + Вх, откуда видно, что оставив равномерной шкалу х и построив логарифмическую шкалу y1, можно изобразить исходное уравнение прямой линией. Полученная координатная сетка называется полулогарифмической.

Очевидно, что такого рода преобразования возможны и в более общем случае. Всякая неявная функция, заданная соотношением вида

аj(х) + by(y) + с = 0,

где a, b, с - постоянные, будет изображаться прямой линией на функциональной сетке, где на оси ОХ построена шкала j(х), а на оси OY - шкала функции y(y). Естественно, что функции j(х) и y(y) должны удовлетворять условиям непрерывности и монотонности. В табл. 3 приведены преобразования для некоторых функций.

Таблица 3

Линеаризация некоторых функций

Исходная

формула

Преобразованная

формула

Замена

переменных

Линеаризованная формула

y=axb

lg y=b×lgx+lga

lg y=y1

lg x=x1

lg a=a1

y1=bx1+a1

y=a×lgx+b

¾

lg x=x1

y=ax1+b

y=ebx+k

lg y=b×lge×x+k×lge

lg y=y1

b×lg e=a

k×lg e=k1

y1=ax+k1

y=aebx

lg y=bx×lge+lga

lg y=y1

b×lg e=b1

lg a=a1

y1=b1x+a1

y=

¾

y=ax1+b

y=

y1=ax+b

y=

y1=bx1+a

Из сказанного ясна роль функциональных сеток при обработке результатов эксперимента. Если результаты эксперимента располагаются вблизи кривой, то по имеющемуся ограниченному участку кривой трудно судить, какого типа функцией ее лучше всего приближать. Переведя полученные экспериментальные данные на функциональные сетки можно оценить на какой из них эти данные ближе всего подходят к прямой и, следовательно, какой функцией лучше всего описываются.

Аналитические методы обработки результатов

Графический метод обработки результатов обладает наглядностью, относительной простотой, однако его результаты содержат определенную субъективность и относительно низкую точность.

Аналитические методы лишены в какой - то степени указанных недостатков и позволяют получить результат для более широкого класса функций с большей точностью, чем графический метод.

Существуют различные аналитические методы получения параметров эмпирических кривых в зависимости от критерия, принятого при их получении. Рассмотрим некоторые из существующих способов.

Способ средней

Допустим, что имеется n сочетаний xi, yi, полученных при эксперименте. Даже в том случае, если между х и y теоретически установлена функциональная связь ( в данном случае предположим, что линейная ), то наблюдаемые значения yi будут отличаться от ахi + b вследствие наличия экспериментальных ошибок. Обозначим через Di соответствующую ошибку


Страница: