Математическая теория обработки результатов экспериментов
Рефераты >> Технология >> Математическая теория обработки результатов экспериментов

Di = yi - axi - b (i = 1, 2, ., n)

Если выбирать параметры а и b так, чтобы для всех n наблюдений ошибки уравновешивались, т.е. , то это привело бы нас к одному уравнению, тогда как для нахождения двух коэффициентов (а, b) их требуется два. Поэтому предположим, что уравновешивание происходит не только для всех произведенных наблюдений в целом, но и для каждой группы, содержащей половину ( или почти половину ) всех наблюдений в отдельности.

В этом случае можно прийти к системе уравнений

,

где m - число наблюдений в первой группе.

Данную систему уравнений запишем теперь в виде

.

Изложенное показывает, что метод средних ²уравновешивает² положительные и отрицательные отклонения теоретической кривой от экспериментальных значений.

Пример.Используя данные рис. 10 определим коэффициенты а, b методом средней. Для этого семь измерений разделим на две группы m = 3 первых значений, n - m = 4 последующих

; ;

; .

Получаем систему

Решая систему находим

;

b =

Таким образом способ средней дает прямую

y = 0,55х + 3,11.

В сравнении с графическим способом коэффициенты а совпадают и имеется различие в коэффициенте b.

3.3.2. Метод наименьших квадратов

В методе средних при определении коэффициентов уравнения использовалось условие равенства нулю алгебраической суммы отклонений результатов эксперимента от теоретической кривой ( в частном случае прямой ). Очевидно, что при этом Di могут быть значительной величины. Имеет значение только ²уравновешивание² положительных и отрицательных отклонений.

Поставим теперь задачу нахождения по результатам наблюдений наиболее вероятные значения неизвестных коэффициентов.

Предположим, что искомая зависимость y = ¦(х) существует. Тогда параметры этой линии необходимо выбрать таким образом, чтобы точки yi располагались по обе стороны кривой y = ¦(х) как можно ближе к последней. Предположим, что разброс точек yi относительно y = ¦(х) подчиняется закону нормального распределения. Тогда мерой разброса является дисперсия s2 или ее приближенное выражение - средний квадрат отклонений.

.

И требование минимального разброса будет удовлетворено, если минимизировать выражение ( Dyi )2. Как известно, необходимым условием того, что функция приобретает минимальное значение, является то, что ее первая производная ( или частные производные для функции многих переменных ) равна нулю. Применение метода наименьших квадратов имеет смысл, если число экспериментальных точек n больше числа определяемых коэффициентов.

Рассмотрим реализацию метода наименьших квадратов применительно к уравнению вида y = ax + b.

Для нахождения коэффициентов а, b искомой прямой необходимо минимизировать сумму квадратов расстояний Dyi по ординате от точки (хi; yi) до прямой ( см. рис. 12 ). Расстояния Dyi определятся

Dyi = yi - axi - b.

Рис. 12. К способу наименьших квадратов

Для минимизации приравниваем к нулю производные этой суммы по параметрам а, b:

;

.

Преобразуем эту систему

Получим систему нормальных уравнений метода наименьших квадратов.

Решая ее относительно а, b получаем:

; .

Вычисляя из n опытов необходимые суммы и производя указанные действия, получаем величину коэффициентов а, b.

Как видно, способ наименьших квадратов достаточно громоздок и при его применении широко используется вычислительная техника. Метод наименьших квадратов может использоваться и в случае нелинейных функций. Например, если определяются параметры квадратичной зависимости:

y = ах2 + bx + с,

то

.

Дифференцируя это соотношение по а, b, с получаем систему нормальных уравнений:

Из этой системы можно определить параметры а, b, с.

При использовании метода наименьших квадратов при других нелинейностях, удобнее будет линеаризовать исходные зависимости.

В табл. 4 приведены системы нормальных уравнений для некоторых исходных уравнений.

Таблица 4

Системы нормальных уравнений

Исходное

уравнение

Система нормальных уравнений

y=axb

y=a×lgx+b

y=eax+b

y=aebx

y=

y=

y=

Примечания: 1. Величины х, y обозначают значения величин хi, yi в i-ом


Страница: