Кристаллы в природе
Рефераты >> Физика >> Кристаллы в природе

Огромная величина кристаллов – самая поразительная черта пегматитовых жил. Здесь встречаются поистине кристаллы-гиганты. Так, кристалл дымчатого горного хрусталя, представленный во французской коллекции, весит 4050 килограммов. Крупнейшим кристаллом мира считается найденный на Мадагаскаре кристалл берилла массой 380 тонн, длинной 18 метров и 3,5 метра в поперечнике.

1.2 Идеальная форма кристаллов

Форму, которую принимает монокристалл тогда, когда при его росте устранены все случайные факторы, называют идеальной.

Идеальная форма кристалла имеет вид многогранника. Такой кристалл ограничен плоскими гранями, прямыми рёбрами и обладает симметрией. Как и всякий многогранник, кристалл имеет некоторое число граней р, рёбер r, вершин е, причём эти числа связаны между собой соотношением р+е=r+2. В форме правильных многогранников кристаллизуется сравнительно небольшое число кристаллов. В форме куба кристаллизуется поваренная соль, сернистый цинк, в форме октаэдров – алмаз, в форме ромбического додекаэдра – гранат.

1.3. Закон постоянства углов - основной закон кристаллографии

Кристаллы одного и того же вещества могут иметь весьма разнообразную форму. Форма кристалла, как указывалось выше, зависит от условия кристаллизации. Цвет не является характерным признаком кристаллов данного вещества, но он очень сильно зависит от примесей. Однако кристаллографы установили:

В кристаллах одного вещества углы между соответственными гранями всегда одинаковы [закон постоянства углов].

Грани могут отличаться между собой по форме и всё-таки считаться равными, если они обладают одинаковыми физическими и химическими свойствами.

Закон постоянства углов утверждает, что двугранный угол, образованный гранями а и b (рис3) в различных кристаллах данного вещества, будет один и тот же. Соответственно во всех кристаллах данного вещества будут равны между собой и двугранные углы, образованные гранями а и с, b и с.

рис. 3

1.4. О симметрии

С явлением симметрии мы часто встречаемся в окружающей жизни.

Если тело можно мысленно пересечь плоскостью так, что каждой точке а, тела с одной стороны плоскости, будет соответствовать точка b, лежащая по другую сторону плоскости, притом так, что прямая аb, соединяющая эти две точки, перпендикулярна плоскости и делится этой плоскостью пополам, то это тело обладает зеркальной симметрией. Сама плоскость называется в этом случае плоскостью симметрии.

Кроме зеркальной симметрии, тела могут обладать ещё поворотной симметрией. Тело обладает поворотной симметрией, если при повороте на соответствующий угол все части фигуры совмещаются друг с другом. Ось, вокруг которой происходит вращение тела, называют осью симметрии. Смотря по тому, сколько раз совместится фигура сама с собой при полном обороте вокруг оси, ось симметрии имеет различный порядок (1, 2, 3 и т.д.).

Тела могут обладать ещё центром симметрии. Центр симметрии - точка в середине тела, относительно которой любая точка тела имеет другую соответствующую её точку, лежащую на таком же расстоянии от центра в противоположном направлении.

1.5. Симметрия кристаллов

Идеальные формы кристаллов симметричны. По выражению известного русского кристаллографа Е.С.Федерова (1853-1919), «кристаллы блещут симметрией».

В кристаллах можно найти различные элементы симметрии: плоскость симметрии, ось симметрии, центр симметрии.

Рассмотрим симметрию некоторых кристаллических форм. Кристаллы в форме куба (NaCl, KCl и др.) имеют девять плоскостей симметрии, три из которых проходят параллельно граням куба, а шесть по диагоналям. Кроме того, куб имеет три оси симметрии 4-ого порядка, четыре оси 3-его порядка и шесть осей 2-го порядка (рис 4)

рис. 4

Кроме того, он имеет центр симметрии. Всего в кубе 1+9+3+4+6=23 элемента симметрии. У кристаллов медного купороса имеется лишь центр симметрии, других элементов у них нет.

В 1867г. впервые со всей очевидностью русский инженер и кристаллограф А.В. Гадолин доказал, что кристаллы могут обладать лишь 32 видами симметрии.

1.6. Пространственная решётка

Симметрия, закон постоянства углов и ряд других свойств кристаллов привели кристаллографов к догадке о закономерном расположении частиц, составляющих кристалл. Они стали представлять, что частицы в кристалле расположены так, что центры тяжести их образуют правильную пространственную решётку. Например, кристалл поваренной соли NaCl состоит из совокупности большого числа ионов Na+ и Cl- , определённым обзором расположенных друг относительно друга. Если изобразить каждый из ионов точкой и соединить их между собой, то можно получить геометрический образ, рисующий внутреннюю структуру идеального кристалла поверенной соли, его пространственную решётку (рис.5). Пространственные решётки различных кристаллов различны.

рис.5

а б в г

рис. 6

Понятие о пространственной решётке кристалла оказалось очень плодотворным, оно позволило объяснить ряд свойств кристалла.

Например, что кристалл, имеющий идеальную форму, ограничен плоскими гранями и прямыми рёбрами.

Этот факт можно объяснить тем, что плоскости и рёбра идеального кристалла всегда проходят через узлы пространственной решётки.

Пространственная решётка позволяет объяснить и основной закон кристаллографии - закон постоянства углов.

Однако плодотворность представления внутреннего строения кристалла в виде пространственной решётки наиболее наглядно проявляется в объяснении симметрии кристаллов. Всё разнообразие видов симметрии кристаллов может быть доказано на основе симметрии пространственных решёток. Симметрия кристаллов является следствием симметрии пространственной решётки.

Доказательство этого факта имело значения для науки. Работы Е.С. Федорова превратили кристаллографию в стройную теоретическую науку, возвысив её в конце XIX века. Над всеми науками о строении твёрдых тел.

1.7. Экспериментальные исследования строения кристаллов

С древнейших времёнкристаллы поражали человеческое воображение своим исключительным геометрическим совершенством. Наши предки видели в них творения ангелов или подземных духов. Первой попыткой научного объяснения формы кристаллов считается произведение Иоганна Кеплера «О шестиугольных снежинках» (1611). Кеплер высказывал предположение, что форма снежинок (кристалликов льда) есть следствие особых расположений составляющих их частиц. Спустя три века было окончательно установлено, что специфические особенности кристаллов связаны с особыми расположениями атомов в пространстве, которые аналогичны узорам в калейдоскопах. Все различные законы таких расположений были выведены в 1891 году нашим соотечественником Е.С.Федеровым (1853-1919). Правильные формы кристаллических многогранников легко объясняются в рамках этих законов. И сами эти законы настолько красивы, что не раз служили основой для произведений искусства.


Страница: