Некотрые аспекты методики обучения решению текстовых задач в курсе математики начальной школы
Рефераты >> Педагогика >> Некотрые аспекты методики обучения решению текстовых задач в курсе математики начальной школы

3. Особенности работы над задачей у Л.Г. Петерсона.

Предлагаемый курс математики для начальной школы (1-3) и (1-4) создан на базе психолого-педагогических исследований, проведенных в 70-х, начале 80-х годов.

Этот курс является частью единого непрерывного курса математики, который разрабатывается в настоящее время с позиций развивающего обучения, гуманизации и гуманитаризации математического образования.

Обучение в школе строится на основе деятельностного метода, который включает этапы урока:

- постановка учебной задачи;

- открытие детьми нового знания;

- первичное закрепление (с комментированием);

- самостоятельная работа с проверкой в классе (решение задач на повторение);

- решение тренировочных упражнений;

- контроль.

Основная особенность деятельностного метода заключается в том, что новые математические понятия и отношения между ними не даются детям в готовом виде. Дети «открывают» их сами в процессе самостоятельной исследовательской деятельности. Учитель лишь направляет эту деятельность и в завершении подводит итог, давая точную формулировку установленных алгоритмов действия и знакомя с общепринятой системой обозначений. Таким образом, дети строят свою математику, поэтому математические понятия приобретают для них личностную значимость и становятся интересными не с внешней стороны, а по сути.

Еще одной особенностью использования деятельностного метода является необходимость предварительной подготовки детей в плане развития у них мышления, речи, творческих способностей, познавательных мотивов деятельности. Специальная работа в этом направлении предусмотрена в течении всех лет обучения детей в начальной школе, но особенно на начальных этапах обучения – в I полугодии 1 класса.

Методика работы над задачей очень интересна. Была проведена подготовительная работа по обучению детей решению текстовых задач на сложение и вычитание.

Учащиеся составляли по картинкам различные задачи, подбирали к ним соответствующие числовые выражения; сравнивали эти выражения. Текстовые задачи систематически включались в устные упражнения.

Таким образом, дети факти­чески уже умеют решать простые задачи на сложение и вычитание. На данном этапе обучения уточняются термины, связанные с понятием «задача», рассмат­ривается краткая запись содержания задач с помощью схем, вводится понятие обратной задачи. В игровой, доступной для учащихся форме ставится вопрос о корректности ее формулировки.

Вначале можно предложить учащимся составить задачу по картинке, напри­мер:

«Было 4 шоколадные конфеты и 3 леденца. Сколько всего было конфет?»

Учитель обращает внимание детей на то, что текст задачи можно разбить на 2 части:

1) условие задачи — то, что известно (было 4 шоколадные конфеты и 3 леденца);

2) вопрос задачи — то, что надо найти (сколько было конфет?)

Далее учитель просит учащихся составить выражение к этой задаче (4+3) и найти его значение. Полу генное равенство называют решением задачи, а значе­ние выражения (7 конфет) —ответом задачи. Затем поданной картинке учащие­ся составляют все возможные равенства и записывают их в тетради в клетку:

4 + 3 = 7 7 – 4 = 3

3 + 4 = 7 7 – 3 = 4

Для каждого из полученных равенств они придумывают задачу, называют условие, вопрос и выражение к ней.

Таким образом, поиск решения сводится к тому, чтобы установить, ищется часть или целое. Разобраться в этом помогает рисунок, но если числа большие, то делать рисунки неудобно — слишком много предметов надо рисовать. На по­мощь приходит схема - отрезок, разбитый на части. Дело в том, что, разбивая отрезок на части, мы получаем те же самые соотношения между частью и це­лым, что и при разбиении совокупностей предметов

4 + 3 = 7

3 + 4 = 7

7 – 4 = 3

7 – 3 = 4

Дети рисуют в тетради в клетку отрезок длиной 7 клеток, разбивают его на части 4 клетки и 3 клетки и еще раз убеждаются в том, что все записанные ими ранее соотношения для разбиения на части конфет выполняются и для разбие­ния отрезка. Значит, наглядно представить содержание задачи можно, сопоста­вив целое всему отрезку, а части — соответственно, частям отрезка. Например, схема к I задаче про конфеты может выглядеть так:

На этой схеме весь отрезок обозначает число всех конфет, а части отрезка - число шоколадных конфет и леденцов. Знак вопроса показывает, что ищется целое. Схемы к другим составленным задачам выглядят так:

По схемам видно, что в обеих задачах ищется часть, поэтому они решаются вычитанием. При этом количество клеток в каждой части не оказывает никакого влияния на выбор действия и поиск ответа. Поэтому в качестве схемы можно выбрать отрезок любой длины. Важно лишь, чтобы верно было показано, на какие части в данной задаче разбито целое.

Учитель поясняет детям, что использование схем особенно удобно для задач с большими числами, когда непосредственный рисунок сделать трудно или же невозможно. Такие задачи нам будут встречаться позже. А пока на простых задачах мы будем овладевать этим удобным способом краткой записи, позволяющим легко и быстро найти ответ на вопрос задачи.

Чтобы проверить усвоение учащимися графического моделирования задач, можно предложить им на этом же уроке небольшую работу на 5 - 7 минут. Каждому ученику на листке бумаги раздаются заготовки схем для 3 - 4 задач. Затем учитель читает по 2 раза вслух условие задачи, учащиеся самостоятельно запол­няют схему и рядом записывают решение (выражение и ответ для экономии времени записывать не стоит). (см. Приложение 1)

Далее рассматриваются взаимно обратные задачи. Вначале дети самостоятельно решают задачу. При проведении самоконтроля учитель выставляет схему к этой задаче:

Затем он закрывает знак вопроса карточкой «5», а число 2 - карточкой «?» и предлагает учащимся составить задачу для получившейся схемы:


Страница: