Некотрые аспекты методики обучения решению текстовых задач в курсе математики начальной школы
Рефераты >> Педагогика >> Некотрые аспекты методики обучения решению текстовых задач в курсе математики начальной школы

Введение

Математика проникает почти во все области деятельности человека, что положительно сказалось на темпе роста научно-технического прогресса. В связи с этим стало жизненно необходимым усовершен­ствовать математическую подготовку подрастающего поколения.

Ребенок с первых дней занятий в школе встречается с задачей.

С начала и до конца обучения в школе математическая задача неизменно помогает ученику вырабатывать правильные математические понятия, глубже выяснять различные стороны взаимосвязей в окружающей его жизни, дает возможность применять изучаемые теоретические положения. В тоже время решение задач способствует развитию младших школьников.

Как обучать детей нахождению способа решения текстовой задачи? Этот вопрос – центральный в методике обучения решению задач. Для ответа на него в литературе предложено немало практических приемов, облегчающих поиск способа решения задачи. Однако теоретические положения относительного нахождения пути решения задачи остаются мало разработанными.

Особенности текста задачи могут определить ход мыслительного процесса при ее решении. Как сориентировать детей на эти особенности? Знание ответов на них составляют теоретико-методические положения, на основе которых можно строить конкретную методику обучения; они помогут определить методические приемы поиска способов решения задачи, в том числе решения различными способами.

Решение задач занимает в математическом образовании огромное место. Умение решать задачи является одним из основных показателей уровня математического развития, глубины освоения учебного материала.

Математику любят в основном те ученики, которые умеют решать задачи. Следовательно, научить детей владеть умением решения задачи, мы окажем существенное влияние на их интерес к предмету, на развитие мышления и речи.

Первоначальные математические знания усваиваются детьми в определенной, приспособленной к их пониманию системе, в которой отдельные положения логически связаны одно с другим, вытекают одно из другого. При сознательном усвоении математических знаний учащиеся пользуются основными операциями мышления в доступном для них виде: анализом и синтезом, сравнением, абстрагированием и конкретизацией, обобщением; ученики делают индуктивные выводы, проводят дедуктивные рассуждения. Сознательное усвоение учащимися математических знаний развивает математическое мышление учащихся. Овладение мыслительными операциями в свою очередь помогает учащимся успешнее усваивать новые знания.

Объектом исследования является методика обучения решению текстовых задач на уроках математики.

Предметом исследования является процесс решения текстовых задач младшими школьниками.

Цель – исследовать методику работы над текстовой задачей, выявить новые подходы к решению текстовых задач.

Задачи:

Ø Анализ литературы по данной проблеме;

Ø Выявить роль текстовых задач в процессе обучения;

Ø Изучить методику работы над текстовой задачей;

Ø Анализ нетрадиционных подходов в методике работы над текстовой задачей;

Ø Выявить возможность текстовой задачи для диагностики уровня развития мышления младших школьников;

Гипотеза: Я предполагаю, что новые подходы, формы, направления работы над задачей более успешно позволяют организовать процесс решения текстовых задач.

Методы:

Ø Метод теоретического анализа, синтеза, обобщения и конкретизации;

Ø Метод тестирования с помощью методики определения уровня развития логического мышления учащихся;

Ø Методы количественного анализа и качественной обработки данных исследования.

I. Роль текстовых задач.

1. Развитие младших школьников на уроках математики.

Развитие младшего школьника — важная составная часть педагогического процесса. Помочь учащимся в полной мере проявить свои способности, развить инициативу, самостоятельность, творческий потенциал — одна из основных задач современной школы. Успешная реализация этой задачи во многом зависит от сформированности у учащихся познавательных интересов.

В развитии познавательной деятельности младшего школьника особую роль играет мышление. П.П. Блонский подчеркивал: «Мышление – та функция, интенсивнейшее развитие которой является одной из самых характерных особенностей школьного возраста. Ни в ощущении, ни мнемических способностях нет такой огромной разницы между ребенком 6 – 7 лет и юношей 17 – 18 лет, какая существует в их мышлении», [2,с.82].

В тесной связи с мышлением развиваются все познавательные процессы. Именно с развитием мышления складываются такие важные новообразования школьного возраста, как внутренний план действий (действий «в уме») и рефлексия (умение рассматривать и оценивать свои собственные действия).[25]

Математика даёт реальные предпосылки для развития мышления, задача учителя — полнее использовать эти возможности при обучении детей математике. Однако, конкретной программы приемов мышления, которые должны быть сформулированы при изучении данного предмета, нет. В результате работа над развитием мышления идёт без знания системы необходимых приёмов, без знания их содержания и последовательности формирования.

Первоначальные математические знания усваиваются детьми в определённой, приспособленной к их пониманию, системе, в которой отдельные положения логически связаны одно с другим, вытекают одно из другого. При сознательном усвоении математических знаний учащиеся пользуются основными операциями мышления в достигнутом для них виде: анализом и синтезом, сравнением, абстрагированием и конкретизацией, обобщением; ученики делают индуктивные выводы, проводят дедуктивные рассуждения. Сознательное усвоение учащимися математических знаний развивает мышление учащихся. Овладение мыслительными операциями в свою очередь помогает учащимся успешнее усваивать новые знания.

Познавая предметы и явления окружающей действительности, мы можем мысленно расчленять предмет или явление на составные части и мысленно же соединять части в одно целое. Операция мышления, направленная на расчленение целого на составляющие его части, называется анализом. Операция мышления, направленная на установление связи между предметами или явлениями, называется синтезом. Эти операции мышления взаимно связаны.

Ф. Энгельс отменяет, что « .мышление состоит столько же в разложении предметов создания на их элементы, сколько в объединении связанных друг с другом элементов в некоторое единство. Без анализа нет синтеза», [25,с.135].

Анализ и синтез, взаимно связанные операции мышления, находят постоянное применение, как при изучении элементов арифметической теории, так и при решении примеров и задач.

Уже на первых шагах обучения при изучении чисел первого десятка учащиеся пользуются наглядно-действенным анализом (разложением) предметных множеств на составляющие их элементы и наглядно-действенным синтезом (соединением), группируя элементы во множества.

Наглядный анализ и синтез сменяется затем анализом и синтезом по представлению: ребёнок может выполнить разложение чисел или их соединение, оперируя со зрительными образами, которые сохраняются в его памяти и могут быть воспроизведены в его сознании.


Страница: