Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле
Рефераты >> Математика >> Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле

Основной нашей целью является выяснение того, как скажется на формуле переход от односвязной области к двусвязной.

Величина

,

где интеграл справа берется по окружности радиуса () с центром в точке , очевидно, не зависит от . Тем же свойством обладает и вещественная часть написанного интеграла.

Отсюда, приближая вначале к 1, а замечая, что в интеграле можно

сделать требуемые предельные переходы, получим:

. (30)

Это условие, таким образом, необходимо для разрешимости поставленной нами проблемы, и мы должны предположить, что она выполняется.

Искомая функция может быть разложена в ряд Лорана

. (31)

Мы найдем разложения обеих функций , в ряды Фурье. Из этих разложений получаются коэффициенты в виде некоторых интегралов и подставляя в (31) получим известную формулу Анри Вилля для кругового кольца в форме Н.И.Ахиезера [7].

, (32)

где с – произвольная вещественная константа, - произвольное положительное число, а чисто мнимое число находится с помощью равенства

, (33)

, и, наконец - функция Вейерштрасса.

Формула (32), принадлежащая Вилли, представляет собой аналог формулы Шварца для кругового кольца; она приведена в иной форме, например в монографии Н.Ахиезера [7].

а) Преобразование интегральной формулы А.Вилля (32).

Формула Анри Вилля в форме Н.И.Ахиезера [7].

, (34)

где из (33) следует, что , где - положительное действительное число, можно придать более компактную форму, если несколько преобразуем (32), учитывая (33) и замечая, что можно выразить через с учетом граничных свойств:

,

, ; (35)

, .

Таким образом, интегральная формула (32) с учетом (34) и (35) примет следующий окончательный вид:

, (36)

где с – постоянная.

Формулу (36) можно назвать канонической, компактной и контурной интегральной формулой Анри Вилля для кругового кольца.

б) Функции Вейерштрасса.

В виду важности трех функций Вейерштрасса , и для практического применения и простоты реализации на ЭВМ мы рассмотрим следующие варианты представления данных функций [19] - [22]:

1. (37)

или

(38)

2. ,

: , (39)

,

для действительных нулей полинома возможны следующие частные случаи:

: ,

,

.

(40)

3. ,


Страница: