Страница
7
Основной нашей целью является выяснение того, как скажется на формуле переход от односвязной области к двусвязной.
Величина
,
где интеграл справа берется по окружности радиуса (
) с центром в точке
, очевидно, не зависит от
. Тем же свойством обладает и вещественная часть написанного интеграла.
Отсюда, приближая вначале к 1, а замечая, что в интеграле можно
сделать требуемые предельные переходы, получим:
. (30)
Это условие, таким образом, необходимо для разрешимости поставленной нами проблемы, и мы должны предположить, что она выполняется.
Искомая функция может быть разложена в ряд Лорана
. (31)
Мы найдем разложения обеих функций ,
в ряды Фурье. Из этих разложений получаются коэффициенты
в виде некоторых интегралов и подставляя в (31) получим известную формулу Анри Вилля для кругового кольца в форме Н.И.Ахиезера [7].
, (32)
где с – произвольная вещественная константа, - произвольное положительное число, а чисто мнимое число
находится с помощью равенства
, (33)
,
и, наконец
- функция Вейерштрасса.
Формула (32), принадлежащая Вилли, представляет собой аналог формулы Шварца для кругового кольца; она приведена в иной форме, например в монографии Н.Ахиезера [7].
а) Преобразование интегральной формулы А.Вилля (32).
Формула Анри Вилля в форме Н.И.Ахиезера [7].
, (34)
где из (33) следует, что , где
- положительное действительное число, можно придать более компактную форму, если несколько преобразуем (32), учитывая (33) и замечая, что
можно выразить через
с учетом граничных свойств:
,
,
; (35)
,
.
Таким образом, интегральная формула (32) с учетом (34) и (35) примет следующий окончательный вид:
, (36)
где с – постоянная.
Формулу (36) можно назвать канонической, компактной и контурной интегральной формулой Анри Вилля для кругового кольца.
б) Функции Вейерштрасса.
В виду важности трех функций Вейерштрасса ,
и
для практического применения и простоты реализации на ЭВМ мы рассмотрим следующие варианты представления данных функций [19] - [22]:
1. (37)
или
(38)
2. ,
:
,
(39)
,
|


:
,
,
.
|
