Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле
Рефераты >> Математика >> Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле

§2. О задачах Шварца-Пуассона.

а) Интеграл Шварца для круга

Как известно, по данным значениям вещественной (мнимой) части функции находится с точностью до чисто мнимого слагаемого. Аналитический аппарат, дающий выражение функции , регулярной в области, через значения на контуре, в том случае, когда область есть круг радиуса , известен – это есть так называемый интеграл Шварца [6, 8, 9]:

, (, ) (18)

Полагая здесь , мы найдем для чисто вещественное значение , для которого мнимая часть обращается в нуль в начале координат.

Чтобы получить общее решение, мы должны добавить к правой части произвольное мнимое число :

, . (19)

Отделим в (18) вещественную и мнимую части, так как вещественная

часть даст нам интеграл Пуассона для и мнимая же часть доставляет выражение через .

Для единичного круга , имеет вид:

, (20)

где , - представляет значение вещественной части искомой функции в точке .

б) Интегральная формула Пуассона.

Задача Дирихле об определении значений гармонической функции внутри круга, если известны ее значения на границе, решается, как известно, интегралом Пуассона:

, (21)

где - полярные координаты точки, где ищется значение решения; - радиус окружности и - функция полярного угла , дающая граничные значения [9].

Можно проверить разложением в ряд Тейлора, что

,

(, )

Поэтому представима рядом:

(22)

где и - коэффициенты Фурье :

; ;

В центре окружности при мы получаем:

(23)

Равенство (23) – теорема Гаусса о том, что значение гармонической функции в центре окружности есть среднее арифметическое ее значений на самой окружности.

в) Интеграл Пуассона для внешности круга.

Найти функцию, гармоническую и ограниченную вне окружности и принимающую на самой окружности заданные значения [9]:

, ().

Покажем, что искомую функцию может быть представлена интегралом типа Пуассрна, который может быть получен из (1).

Пусть , а ,

Функция , гармоническая вне окружности , перейдет в функцию , гармоническую внутри круга радиуса , принимающую на его границе значения

.

По формуле (1) она при представима интегралом Пуассона:

.

Если в этом равенстве подставить вместо и их выражения через и и заменить переменную интегрирования, положив , то мы получим формулу Пуассона для внешности окружности:


Страница: