Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле
Рефераты >> Математика >> Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле

Для нахождения гармонической (или ) в произвольной односвязной области функций, достаточно знать или обычные классические интегральные формулы Пуассона для круга :

или

.

2. Для нахождения решения задачи Дирихле в произвольной двусвязной ограниченной (конечной) области через - решение кругового кольца надо пользоваться контурной компактной формулой Вилля, т.е. и - интегральные формулы Пуассона для кругового кольца ():

(71)

,

.

Таким образом, аналогичными примерами можно найти и для остальных рассмотренных областей решения задачи Дирихле () через и .

§5. Об интегральных представлениях Пуассона-Дирихле

для заданных областей.

Пусть , , - нормированная функция дает конформное отображение канонической области плоскости на соответствующую область плоскости . Простоты ради будем считать, что .

В силу конформности отображения мы имеем, что всюду в и, как легко видеть реальная (действительная) часть голоморфной в функции

равна на окружностях :

, (72)

где при , (), (73)

, - угол наклонакасательной к в точках , соответствующих при отображении . Область ограничена гладкими кривыми типа Ляпунова , а в каждой точке контура области плоскости известен угол наклона .

Здесь вещественные числа и комплексные числа , таковы для конечной - связной области, что

, , (, ). (74)

При этом будем считать, что - внешняя, а - внутренние кривые, и будем считать, что , [5].

 

Из существования отображающей функции следует, что функция регулярная, однозначная и эффективная в канонической области согласно равенству (64), представляется по интегральной формуле Шварца [5] в форме Александрова-Сорокина в следующем виде:

 
. (75)


Страница: