Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам ДирихлеРефераты >> Математика >> Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле
Формула (80) – формула Дини-Шварца или интегральная формула Дини-Шварца для кругового кольца.
Если в равенстве (79) отделить действительные и мнимые части, то мы получим непосредственное обобщение интегральной формулы Дини, дающее решение граничной задачи Неймана для кругового кольца:
|
,
где , , .
Формулу (81) можно назвать формулой Дини-Вилля для кругового кольца.
Аналогично можно найти интегральные формулы Пуассона, Шварца-Дини для любых () связных (конечных и бесконечных) областей, используя формулы (70) и (71).
§6. Интегральная формула Чизотти-Пуассона-Дирихле
для конечных трехсвязных областей.
|
Если в каждой точке , где , контура области плоскости известен угол наклона касательной к , где , - внешняя, - внутренние, , .
Построим функцию дающую конформное отображение области на , где . тогда голоморфна в и действительная часть голоморфной функции равна на окружности , т.е.
, , (90)
где - угол наклона касательной к в точках соответствующих при отображении функцией .
Из существования отображающей функции следует, что функция в области согласно (82) можно представить по формуле Шварца для многосвязных областей. Функция регулярна и однозначна в области и ее действительная часть на принимает непрерывные значения . Тогда с помощью формулы Шварца, с учетом (82) функция принимает вид:
, (91)
где , , , - заданная плотность по граничному условию (81), - ядро, определяемое следующими формулами:
, где:
;
|
;
; ; .
; ,
где ядра, зависящие от натурального параметра.