Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам ДирихлеРефераты >> Математика >> Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле
Функция удовлетворяет условию H на этом множестве, если для любых двух переменной на этом множестве
, (4)
где A и - положительные постоянные показатели Гельдера, А – коэффициент, а - показатель условия Н и при =1 – условие Липшица, функции, удовлетворяющие условию Н называются непрерывными по Гельдеру и сильнее, чем обычное определение непрерывности.
г) Классическая задача Дирихле для многосвязных областей [24].
Найти (действительную) функцию u(x,y), гармоническую в , по граничному условию
u=f(t) на L, (5)
где f(t) – заданная на L (действительная) непрерывная функция; в случае бесконечной области от функции u(x,y) требуется еще, чтобы она оставалась ограниченной на бесконечности, т.е. и стремится к вполне определенному пределу, когда z уходит в бесконечность.
Напомним, что всякая функция u(z) гармоническая вне круга в ряд.
, )
абсолютно и равномерно сходящийся вне круга любого радиуса поэтому u→ при r→.
Для некоторых применений не меньший интерес представляет и следующая задача, которая называется "видоизмененной задачей Дирихле". Термин этот введен в статье Н.И.Мусхелишвили и Д.З.Авазошвили [17].
Видоизмененная задача Дирихле – задача Дирихле
для многосвязных областей.
Найти функцию u(x,y), гармоническую в S+, непрерывную в , по следующим условиям:
1. u(x,y)=Ф(z) является действительной частью функции Ф(z), голоморфной в S+;
2. она удовлетворяет граничному условию
u=f(t)+(t) на L, (6)
где f(t) – заданная на непрерывная функция , , (7)
где постоянные не задаваемые заранее; в случае бесконечной области требование u(x,y)=f(t)+ на заменяются требованием ограниченности u(x,y) на бесконечности.
Можно показать, что постоянные вполне определяются условиями самой задачи, если (произвольно) фиксировать одну из них.
Если L состоит из единственного замкнутого контура, то различают два случая:
а) р=0. Тогда S+ представляет собой конечную часть плоскости, ограниченную контуром ;
б) р=1, а контур отсутствует. Тогда область S+ представляет собой бесконечную часть плоскости, ограниченную контуром .
Легко видеть, что в случае а) задачи А и В совпадают (если считать =0) в случае б) эти задачи непосредственно сводятся одна к другой.
Каждая из задач А и В не может иметь более одного решения (если =0).
д) Общая формулировка задачи Дирихле.
Задача Дирихле – задача отыскания регулярной в области D гармонической функции и которая на границе Г области D совпадает с наперед заданной функцией . Задачу отыскания регулярного в области решения эллиптического уравнения 2-го порядка, принимающего на перед заданные значения на границе области, также называется задачей Дирихле, или первой краевой задачей.
Вопросы связанные с этой задачей, рассматривались еще К.Гауссом, а затем Дирихле. Для областей D с достаточно гладкой границей Г решение задачи Дирихле можно представить интегральной формулой
, (8)
где - производная по направлению внутренней нормали в точке функции Грина , характеризуемой следующими свойствами:
1. , при 3 или
, при 2,
где - расстояние между точками и , - площадь единичной сферы в , - регулярная в гармоническая функция как относительно координат , так и относительно координат ;
2. , когда , .
Для шара, полупространства и некоторых других простейших областей функция Грина строится явно и формула (8) дает эффективное решение задачи Дирихле. Получаемые при этом для шара и полупространства формулы носят название формул Пуассона.
Задача Дирихле является одной из основных проблем теории потенциала – теории гармонических функций.
Для обобщенного по Винеру решения задачи Дирихле справедливо интегральное представление в виде формулы Вилля-Пуассона