Современные научные картины мира
Рефераты >> Культурология >> Современные научные картины мира

СОДЕРЖАНИЕ

1. Пространство и время в современной научной картине мира

1.1. Развитие взглядов на пространство и время в

истории науки

1.2. Пространство и время в свете теории относительности А. Энштейна

1.3. Свойства пространства и времени

2. Биосфера. Ноосфера. Человек

2.1. Биосфера

2.2. Человек и биосфера

2.3. Система природа-биосфера-человек

2.4. Взаимосвязь космоса и живой природы

2.5. Противоречия в системе: природа-биосфера-человек

3. Человек как предмет естественно-научного познания.

3.1. Человек - дитя Земли

3.2. Проблема антропогенеза

3.3. Биологическое и социальное в историческом развитии человека

3.4. Биологическое и социальное в онтогенезе человека

3.5. Социобиология о природе человека.

3.6. Социально-этические проблемы генной инженерии человека

3.7. Бессознательное и сознательное в человеке

3.8. Человек: индивид и личность

3.9. Экология и здоровье человека

Литратура

1. Пространство и время в современной научной

картине мира.

Пространство и время как всеобщие и необходимые формы бытия материи являются фундаментальными категориями в со­временной физике и других науках. Физические, химические и дру­гие величины непосредственно или опосредованно связаны с измере­нием длин и длительностей, т.е. пространственно-временных ха­рактеристик объектов. Поэтому расширение и углубление знаний о мире связано с соответствующими учениями о пространстве и времени.

1.1. Развитие взглядов на пространство и время в истории науки

Даже в античном мире мыслители задумывались над природой и сущностью пространства и времени. Так, одни из философов отрицали возможность существования пустого пространства или, по их выражению, небытия. Это были пред­ставители элейской школы в Древней Греции. А знаменитый врач и философ из г. Акраганта, Эмпедокл, хотя и поддерживал учение о невозможности пустоты, в отличие от элеатов утвер­ждал реальность изменения и движения. Он говорил, что рыба, например, передвигается в воде, а пустого пространства не су­ществует.

Некоторые философы, в том числе Демокрит, утверждали, что пустота существует, как материи и атомы, и необходима для их перемещений и соединений.

В доньютоновский период развитие представлений о про­странстве и времени носило преимущественно стихийный и противоречивый характер. И только в "Началах" древнегрече­ского математика Евклида пространственные характеристики объектов впервые обрели строгую математическую форму. В это время зарождаются геометрические представления об одно­родном и бесконечном пространстве.

Геоцентрическая система К. Птолемея, изложенная им в труде "Альмагест", господствовала в естествознании до XVI в. Она представляла собой первую универсальную математическую мо­дель мира, в которой время было бесконечным, а пространство конечным, включающим в себя равномерное круговое движе­ние небесных тел вокруг неподвижной Земли.

Коренное изменение пространственной и всей физической картины произошло в гелиоцентрической системе мира, разви­той Н. Коперником в работе "Об обращениях небесных сфер". Принципиальное отличие этой системы мира от прежних тео­рий состояло в том, что в ней концепция единого однородного пространства и равномерности течения времени обрела реаль­ный эмпирический базис.

Признав подвижность Земли, Коперник в своей теории от­верг все ранее существовавшие представления о ее уникально­сти, "единственности" центра вращения во Вселенной. Тем са­мым теория Коперника не только изменила существовавшую модель Вселенной, но и направила движение естественно­научной мысли к признанию безграничности и бесконечности пространства.

Космологическая теория Д. Бруно связала воедино беско­нечность Вселенной и пространства. В своем произведении "О бесконечности, Вселенной и мирах" Бруно писал: "Вселенная должна быть бесконечной благодаря способности и расположе­нию бесконечного пространства и благодаря возможности и сообразности бытия бесчисленных миров, подобных этому ."1. Представляя Вселенную как "целое бесконечное", как "единое, безмерное пространство", Бруно делает вывод и о безграничности пространства, ибо оно "не имеет края, предела и поверхности".

Практическое обоснование выводы Бруно получили в "физике неба" И. Кеплера и в небесной механике Г. Галилея. В гелиоцентрической картине движения планет Кеплер уви­дел действие единой физической силы. Он установил уни­версальную зависимость между периодами обращения планет и средними расстояниями их до Солнца, ввел представление об их эллиптических орбитах. Концепция Кеплера способст­вовала развитию математического и физического учения о пространстве.

Подлинная революция в механике связана с именем Г. Галилея. Он ввел в механику точный количественный экспе­римент и математическое описание явлений. Первостепенную роль в развитии представлений о пространстве сыграл откры­тый им общий принцип классической механики — принцип от­носительности Галилея. Согласно этому принципу все физиче­ские (механические) явления происходят одинаково во всех системах, покоящихся или движущихся равномерно и прямо­линейно с постоянной по величине и направлению скоростью. Такие системы называются инерциальными. Математические преобразования Галилея отражают движение в двух инерциальных системах, движущихся с относительно малой скоростью (меньшей, чем скорость света в вакууме). Они устанавливают инвариантность (неизменность) в системах длины, времени и ускорения.

Дальнейшее развитие представлений о пространстве и вре­мени связано с рационалистической физикой Р. Декарта, кото­рый создал первую универсальную физико-космологическую картину мира. В основу ее Декарт положил идею о том, что все явления природы объясняются механическим воздействием элементарных материальных частиц. Взаимодействием элемен­тарных частиц Декарт пытался объяснить все наблюдаемые фи­зические явления: теплоту, свет, электричество, магнетизм. Са­мо же взаимодействие он представлял в виде давления или уда­ра при соприкосновении частиц друг с другом и ввел таким об­разом в физику идею близкодействия.

Декарт обосновывал единство физики и геометрии. Он ввел координатную систему (названную впоследствии его именем), в которой время представлялось как одна из пространственных осей. Тезис о единстве физики и геометрии привел его к ото­ждествлению материальности и протяженности. Исходя из

этого тезиса он отрицал пустое пространство и отождествил пространство с протяженностью.

Декарт развил также представление о соотношении длительно­сти и времени. Длительность, по его мнению, "соприсуща мате­риальному миру. Время же — соприсуще человеку и потому является модулем мышления". " . Время, которое мы отли­чаем от длительности, — пишет Декарт в "Началах филосо­фии", — есть лишь известный способ, каким мы эту длитель­ность мыслим . ".


Страница: