Анализ типичных ошибок при решении задач курса школьной математики: уравнения, тригонометрия, планиметрия
Рефераты >> Математика >> Анализ типичных ошибок при решении задач курса школьной математики: уравнения, тригонометрия, планиметрия

Тогда один рабочий за х часов (т.е. в день) выполняет ху единиц работы, а w рабочих за 14 дней выполнят 14wxy единиц работы. Согласно условию 14wxy = 1.

Аналогично, если рабочих стало w + 4, и они работают каждый день х + 1 час, то

10(w + 4)(x + 1)y = 1.

Для случая, когда рабочих еще на 6 человек больше (т.е. w + 6), и они работают еще на час дольше (т.е. х + 1 часа) каждый день, получаем уравнение 7(w + 6)(x + 1)y = 1.

Из системы

надо найти w, x.

Приравняв левые части первого и второго, а также первого и третьего уравнений и упростив, получим систему

Отсюда легко получается, что . Следовательно, второе значение х не подходит. Поэтому получили

Ответ: всего было 54 рабочих; они работали 1,25 часов в день.

3.2. Ответы (протоколы верных решений)

Задача 1.

Решить неравенство: .

Решение:

Найдем корни квадратного уравнения по теореме Виета:

График функции - это парабола, ветви которой направлены вниз:

Нужно отметить те значения x, при которых график находится выше оси Ox. Следовательно, получаем ответ:

Задача 2.

Решить неравенство: .

Решение:

Найдем корни квадратного уравнения по теореме Виета:

График функции - это парабола, ветви которой направлены вниз:

Нужно отметить те значения x, при которых график находится выше оси Ox. Следовательно, получаем ответ:

Задача 3.

Решить неравенство:

Решение:

Корни уравнения : График функции - это парабола, ветви которой направлены вверх.

Выберем те значения x, при которых график находится выше оси Ox. Следовательно, получаем

ответ:

Задача 4.

Решить неравенство:

Решение:

Корни уравнения : График функции - это парабола, ветви которой направлены вверх.

Выберем те значения x, при которых график находится выше оси Ox. Следовательно, получаем

ответ:

Задача 5.

Решить неравенство:

Решение:

Домножим неравенство на –1, получим: Выделим полный квадрат: В левой части неравенства стоит неотрицательное число, а значит неравенство неверно при любых значениях x, т.е. не имеет решений.

Запишем окончательный ответ: решений нет.

Задача 6.

Решить систему неравенств:

Решение:

Решаем каждое из неравенств системы в отдельности:

1.

2.

3.

Для того, чтобы получить решение системы, возьмем пересечение всех полученных интервалов.

Ответ: .

Задача 7.

Решить уравнение:

Решение:

ОДЗ: .

Приведем дроби к общему знаменателю и отбросим знаменатель:

Но x=1 не входит в ОДЗ, поэтому ответ: решений нет.

Задача 8.

Решить уравнение:

Решение:

ОДЗ: , т.к. знаменатель не должен обращаться в ноль.

Приведем дроби к общему знаменателю и отбросим знаменатель:

Но x=1 не входит в ОДЗ, поэтому ответ: решений нет.

Задача 9.

Решить уравнение: .

Решение:

Рассмотрим 4 возможных случая:

1. . В этом случае получаем уравнение . Это значение удовлетворяет уравнению, поэтому является корнем данного уравнения.

2. . В этом случае получаем уравнение . Решение: .


Страница: