Анализ типичных ошибок при решении задач курса школьной математики: уравнения, тригонометрия, планиметрия
Рефераты >> Математика >> Анализ типичных ошибок при решении задач курса школьной математики: уравнения, тригонометрия, планиметрия

Решение:

Дано: , угол .

Найти: .

Треугольник ABC – равнобедренный, т.к. AB=AC=R. Найдем BC по теореме косинусов: . , т.к. АК – высота треуг-ка АВС, следовательно, . Из прямоугольного треуг-ка АВК: . , где ОН=r. Из прямоугольного треуг-ка АОН: , значит, ответ: .

Задача 23.

Решить уравнение: .

Решение:

ОДЗ:.

Применяя формулы понижения степени, приведем это уравнение к более простому виду: , ,

.

Отсюда, используя формулу преобразования суммы косинусов в произведение, получаем: ,

,

.

Рассмотрим 2 случая:

1. ;

2. , следовательно, используя вновь формулу преобразования суммы косинусов в произведение, имеем:

a) ;

b) .

Таким образом, учитывая ОДЗ, получаем

Ответ: .

Задача 24.

Решить уравнение: .

Решение:

ОДЗ: .

Введем новую переменную, положив t = tg x. Так как , то уравнение примет вид: или . Число 2 является корнем полученного уравнения, поэтому это уравнение можно преобразовать следующим образом: . Сократим на (t-2). Квадратный трехчлен во второй скобке не имеет действительных корней. Следовательно, исходное уравнение не имеет корней.

Ответ: решений нет.

Задача 25.

Решить уравнение: .

Решение:

Преобразуем уравнение следующим образом:

.

Рассмотрим 2 случая:

1. ;

2. ;

Ответ: .

Задача 26.

Решить систему:

Решение:

Каждое из уравнений этой системы является простейшим, поэтому нетрудно заметить, что

Решая последнюю систему, получаем

Ответ: .

Задача 27.

Решить задачу: Основания трапеции 5 дм и 40 см. Найти длину отрезка, соединяющего середины диагоналей.

Решение:

Пусть ABCD – трапеция, точка Р – середина диагонали АС, точка К – середина диагонали BD.

Нетрудно заметить, что точки Р и К лежат на средней линии EF трапеции. Так как ЕК – средняя линия треугольника ABD, то . Аналогично, , поскольку является средней линией треугольника АВС. Следовательно, .

Ответ: 17.5 см.

Задача 28.

Решить задачу: Даны 2 стороны треугольника a, b и медиана , проведенная к стороне c. Найти сторону с.

Решение:

Достроим треугольник АВС до параллелограмма АВСК. При этом . По свойству параллелограмма сумма его диагоналей равна сумме его сторон. Поэтому из равенства получаем

Ответ: .

Задача 29.

Решить задачу: Даны 2 стороны треугольника a, b и медиана , проведенная к стороне c. Найти сторону с.

Решение:

Воспользуемся формулой .

Ответ: .

Задача 30.

Решить задачу: Несколько рабочих выполняют работу за 14 дней. Если бы их было на 4 человека больше и каждый работал в день на 1 час больше, то та же работа была бы сделана за 10 дней. Если бы их было еще на 6 человек больше и каждый работал бы еще на 1 час в день больше, то эта работа была бы сделана за 7 дней. Сколько было рабочих, и сколько часов в день они работали?

Решение:

Пусть w - число рабочих, х – число часов их работы в день. Пусть вся работа равна единице, а у – производительность (в час) каждого рабочего.


Страница: