Алгебраическая проблема собственных значенийРефераты >> Математика >> Алгебраическая проблема собственных значений
4. ОПРЕДЕЛЕНИЕ СОБСТВЕННЫХ ЗНАЧЕНИЙ МЕТОДАМИ ПРЕОБРАЗОВАНИЙ ПОДОБИЯ
Метод преобразований подобия применяется с целью получить из исходной матрицы новую с теми же собственными значениями, но более простого вида. Очевидно, самым лучшим упрощением было бы приведение матрицы к чисто диагональному виду, так как в этом случае собственные значения просто соответствовали бы элементам матрицы, стоящим на главной диагонали. К сожалению, большая часть методов преобразования не позволяет этого сделать, и приходится довольствоваться приведением матрицы к трехдиагональной форме.
Метод Якоби
Метод Якоби позволяет привести матрицу к диагональному виду, последовательно, исключая все элементы, стоящие вне главной диагонали. К сожалению, приведение к строго диагональному виду требует бесконечно большого числа шагов, так как образование нового нулевого элемента на месте одного из элементов матрицы часто ведет к появлению ненулевого элемента там, где ранее был нуль. На практике метод Якоби рассматривают, как итерационную процедуру, которая в принципе позволяет достаточно близко подойти к диагональной форме, чтобы это преобразование можно было считать законченным. В случае симметричной матрицы A действительных чисел преобразование выполняется с помощью ортогональных матриц, полученных в результате вращении в действительной плоскости. Вычисления осуществляются следующим образом. Из исходной матрицы А образуют матрицу A1 == Р1АР1T. При этом ортогональная матрица Р1 выбирается так, чтобы в матрице А1 появился нулевой элемент, стоящий вне главной диагонали. Затем из А1 с помощью второй преобразующей матрицы Р2, образуют новую матрицу A2. При этом Р2, выбирают так, чтобы в A2 появился еще один нулевой внедиагональный элемент. Эту процедуру продолжают, стремясь, чтобы на каждом шаге в нуль обращался наибольший внедиагональный элемент. Преобразующая матрица для осуществления указанной операции на каждом шаге конструируется следующим образом. Если элемент аkl матрицы Ат-1 имеет максимальную величину, то Рт соответствует
Pkk = Pll = cos q,
Pkl = - Plk = sin q,
Pii = 1 при i <> k, l, Pij = 0 при i <> j.
Матрица Ат будет отличаться от матрицы Am-1 только строками и столбцами с номерами k и l. Чтобы элемент аkl(m) был равен нулю, значение q выбирается так, чтобы
2 akl(m-1)
tg 2 q = ------------------------- .
akk(m-1) – all(m-1)
k |
l | |||||||||||||||||
1 | ||||||||||||||||||
1 | ||||||||||||||||||
1 | ||||||||||||||||||
1 | ||||||||||||||||||
1 | ||||||||||||||||||
Cos q |
. |
. |
. |
. |
. |
. |
sin q |
k | ||||||||||
1 | ||||||||||||||||||
1 | ||||||||||||||||||
Pm = |
1 | |||||||||||||||||
1 | ||||||||||||||||||
1 | ||||||||||||||||||
1 | ||||||||||||||||||
- sin q |
Cos q |
l | ||||||||||||||||
1 | ||||||||||||||||||
1 | ||||||||||||||||||
1 | ||||||||||||||||||
1 |