Алгебраическая проблема собственных значений
Рефераты >> Математика >> Алгебраическая проблема собственных значений

Xi, где i == 1,. . ., n,

любой произвольный вектор в том же пространстве можно выра­зить через собственные векторы. Таким образом,

n

Y = SaiXi.

i=1

3. Если две матрицы подобны, то их собственные значения сов­падают. Из подобия матриц A и В следует, что

В = Р-1АР.

Так как

АХ = lХ,

то

Р-1АХ = lР-1Х.

Если принять Х == РY, то

Р-1АРY = lY,

а

ВY == lY.

Таким образом, матрицы A и В не только имеют одинаковые собственные значения, но и их собственные векторы связаны соот­ношением

Х = Р Y.

4. Умножив собственный вектор матрицы на скаляр, получим собственный вектор той же матрицы. Обычно все собственные векторы нормируют, разделив каждый элемент собственного вектора либо на его наибольший элемент, либо на сумму квадра­тов всех других элементов.

3. ИТЕРАЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ.

Пожалуй, наиболее очевидным способом решения задачи на собственные значения является их определение из системы урав­нений

(A - lE) Х == 0,

которая имеет ненулевое решение лишь в случае, если det(A - lE)=0. Раскрыв определитель, получим многочлен п-й степени относительно l, корни которого и будут собственными значениями матрицы. Для определения корней можно восполь­зоваться любым из методов, описанных в гл. 2. К сожалению, в задачах на собственные значения часто встречаются кратные корни. Так как итерационные методы, в этих случаях не гарантируют получение решения, то для определения собственных значений следует пользоваться другими итерацион­ными методами.

Определение наибольшего собственного значения методом итераций

На рис. 1 показана блок-схема простейшего итерационного метода отыскания наибольшего собственного значения системы

AХ =lХ.

Процедура начинается с пробного нормированного вектора X(0). Этот вектор умножается слева на матрицу A, и результат приравнивается произведению постоянной (собственное значение) и нормированному вектору X(0) Если вектор X(0) совпадает с вектором X(0), то счет прекращается. В противном случае новый нормированный вектор используется в качестве исходного и вся процедура повторяется. Если процесс сходится, то постоянный множитель соответствует истинному наибольшему собст­венному значению, а нормированный вектор — соответствующему собственному вектору. Быстрота сходимости этого итерационного процесса зависит от того насколько удачно выбран начальный вектор. Если он близок к истинному собственному вектору, то итерации сходятся очень быстро. На быстроту сходимости влияет также и отношение величин двух наибольших собственных значений. Если это отношение близко к единице, то сходимость оказывается медленной.

Выбор нормированного собственного вектора

X(0)

Рис. 1. Блок-схема алгоритма иитерационного метода решения задач на собственные значения.

Пример 1

Исследуем трехосное напряженное состояние элемента тела, представленного на рисунке 2. Матрица напряжений для него имеет вид

10

5

6

 

5

20

4

* 106 Н/м2

Подпись: 30*106 Па6

4

30

 

Рисунок 2.Трехосное напряженное состояние элемента тела.

Если исходить из того, что разрушение произойдет при максимальном напряжении, то необходимо знать величину наибольшего главного напряжения, которое соответствует наибольшему собственному значению матрицы напряжений. Для нахождения этого напряжения воспользуемся методом итерации Ниже приведена программа для ЭВМ, с помощью которой итерационная процедура осуществляется до тех пор, пока разность между собственными значениями, вычисленными в последовательных итерациях, не станет менее 0,01%. В программе использованы две подпрограммы — GMPRD из пакета программ для научных исследований фирмы IВМ, служащая для перемножения матриц и NORML, нормирующая собственные векторы по наибольшему элементу.

{**********************************************************************}

Программа определения собственных значений Программа позволяет определить наибольшее главное напряжение (собственное значение) для данного трехосного напряженного состояния. Применяется метод итераций. Счет прекращается, когда изменение собственного значения становится менее 0,01 процента или число итераций превышает 50.

{**********************************************************************}

DIMENSION S(3,3),X(3),R(3)

S(1,1) = 10.E06

S(1,2) = 5.ЕО6

S(2,1) = S(1,2)

S(1,3) = 6.E06

S(3,1) = S(1,3)

S(2,2) = 20.E06

S(2,3) = 4.E06

S(3,2) = S(2,3)

S(3,3) = З0.Е06

X(1) = 1.

Х(2) = 0.0

Х(3) = 0.0

XOLD = 0.0

I = 0

WRITE(6 100)

WRITE(6 101)

WRITE(6 102)

WRITE(6 100)

WRITE(6 104) I,X(1),X(2),X(3)

DO 1 1=1,50

CALL GMPRD (S, X, R, 3, 3, 1)

DO 2 J=1,3

2 X(J) = R(J)

CALL NORML(XLAM,X)

WRITE(6,103) I,XLAM,X(1),X(2),X(3)

IF(ABS((XOLD-XLAM)/XLAM).LE.0.0001) GO TO 3

1 XOLD = XLAM

3 WRITE(6,100)

100 FORMAT (1X 54C'-''))

101 FORMAT (2X ‘ITERATION’, ЗХ ‘ITERATION’, 11X,‘EIGENVECTOR')

102 FORMAT (3X 'NUMBER", 6X ,'(N/M**2)’, 5X, ‘X(1)’,

6X,'X(2)',6X,’X(3)’)


Страница: