Алгебраическая проблема собственных значений
Рефераты >> Математика >> Алгебраическая проблема собственных значений

Собственные значения.

1. ВВЕДЕНИЕ

Целый ряд инженерных задач сводится к рассмотрению систем уравнений, имеющих единственное решение лишь в том случае, если известно значение некоторого входящего в них параметра. Этот особый параметр называется характеристическим, или соб­ственным, значением системы. С задачами на собственные значе­ния инженер сталкивается в различных ситуациях. Так, для тензоров напряжений собственные значения определяют главные нормальные напряжения, а собственными векторами задаются направления, связанные с этими значениями. При динамическом анализе механических систем собственные значения соответст­вуют собственным частотам колебаний, а собственные векторы характеризуют моды этих колебаний. При расчете конструкций собственные значения позволяют определять критические на­грузки, превышение которых приводит к потере устойчивости.

Выбор наиболее эффективного метода определения собствен­ных значений или собственных векторов для данной инженерной задачи зависит от ряда факторов, таких, как тип уравнений, число искомых собственных значений и их характер. Алгоритмы решения задач на собственные значения делятся на две группы. Итерационные методы очень удобны и хорошо приспособлены для определения наименьшего и наибольшего собственных значений. Методы преобразований подобия несколько сложней, зато позволяют определить все собственные значения и собственные векторы.

В данной работе будут рассмотрены наиболее распространенные методы решения задач на собственные значения. Однако сначала приведем некоторые основные сведения из теории матричного и векторного исчислений, на которых базируются методы опреде­ления собственных значений.

2. НЕКОТОРЫЕ ОСНОВНЫЕ СВЕДЕНИЯ, НЕОБХОДИМЫЕ ПРИ РЕШЕНИИ ЗАДАЧ НА СОБСТВЕННЫЕ ЗНАЧЕНИЯ

В общем виде задача на собственные значения формулируется следующим образом:

AX = lX,

где A — матрица размерности n х n. Требуется найти n скаляр­ных значений l и собственные векторы X, соответствующие каждому из собственных значений.

Основные определения матричного исчисления

1. Матрица A называется симметричной, если

аij = аij, где i, j = 1, 2, . . ., n.

Отсюда следует симметрия относительно диагонали

аkk, где k == 1, 2, . . ., n.

Матрица

1

4

5

4

3

7

5

7

2

является примером симметричной.

2. Матрица A называется трехдиагональной, если все ее элементы, кроме элементов главной и примыкающих к ней диа­гоналей, равны нулю. В общем случае трехдиагональная матри­ца имеет вид

                 

*

*

         

0

 

*

*

*

           
 

*

*

*

         
 

.

.

.

.

.

.

   
         

*

*

*

 
 

0

       

*

*

*

             

*

*

Важность трехдиагональной формы обусловлена тем, что некоторые методы преобразований подобия позволяют привести произвольную матрицу к этому частному виду.

3. Матрица A называется ортогональной, если

АТА = Е,

где Ат—транспонированная матрица A, а Е—единичная матрица. Очевидно, матрица, обратная ортогональной, эквива­лентна транспонированной.

4. Матрицы А и В называются подобными, если существует такая несингулярная матрица Р, что справедливо соотношение

В = Р-1АР.

Основные свойства собственных значений.

1. Все п собственных значений симметричной матрицы раз­мерности пХп, состоящей из действительных чисел, действи­тельные. Это полезно помнить, так как матрицы, встречающиеся в инженерных расчетах, часто бывают симметричными.

2. Если собственные значения матрицы различны, то ее соб­ственные векторы ортогональны. Совокупность п линейно неза­висимых собственных векторов образует базис рассматривае­мого пространства. Следовательно, для совокупности линейно независимых собственных векторов


Страница: