Метод средних величин в изучении общественных явлений
Рефераты >> Статистика >> Метод средних величин в изучении общественных явлений

Выбор формы средней обусловлен исходным соотношением, суть которого приводилась выше. Существует порядок расчета средней величины:

1. Определение исходного соотношения для исследуемого показателя.

2. Определение недостающих данных для расчета исходного соотношения.

3. Расчет средней величины.

Рассмотрим виды средних, которые наиболее часто используются в статистике.

3.1. Степенные средние

3.1.1. Средняя арифметическая.

Средней арифметической величиной называется такое среднее значение признака, при вычислении которого общий объём признака в совокупности остаётся неизменным. [4]Иначе можно сказать, что средняя арифметическая величина – среднее слагаемое. При её вычислении общий объём признака мысленно распределяется поровну между всеми единицами совокупности.

Средняя арифметическая применяется, если известны значения осредняемого признака (х) и количество единиц совокупности с определённым значением признака (f).

Средняя арифметическая бывает простой и взвешенной.

3.1.1.1. Средняя арифметическая простая

Простая используется, если каждое значение признака х встречается один раз, т.е. для каждого х значение признака f=1, или если исходные данные не упорядочены и неизвестно, сколько единиц имеют определённые значения признака.

Формула средней арифметической простой имеет вид:

,

где - средняя величина; х – значение осредняемого признака (варианта), - число единиц изучаемой совокупности.

Например, предположим, что пять филиалов банка, имеют следующий денежный оборот за месяц (Табл.2):

Таблица 2

Распределение денежного оборота банка по числу филиалов за месяц

Филиал

1

2

3

4

5

Денежный оборот (млн.руб.)

145

120

98

111

117

Определить средний денежный оборот на один филиал за месяц.

В данном примере варьирующий признак – денежный оборот каждого филиала за месяц.

Численные значения признака (145, 120, 98, 111, 117) называют вариантами.

Средний денежный оборот на один филиал за месяц составит:

- средний денежный оборот одного филиала за месяц.

3.1.1.2. Средняя арифметическая взвешенная

В отличие от простой средней средняя арифметическая взвешенная применяется, если каждое значение признака х встречается несколько раз, т.е. для каждого значения признака f≠1. Данная средняя широко используется при исчислении средней на основании дискретного ряда распределения:

,

где - число групп, х – значение осредняемого признака, f- вес значения признака (частота, если f – число единиц совокупности; частость, если f- доля единиц с вариантой х в общем объёме совокупности).

Например, имеются следующие данные о количестве операций и общей сумме в руб. за рабочую неделю, совершённых в платёжной системе (Табл.3).

Таблица 3

Распределение количества операций, совершённых в платёжной системе

Дата

Количество операций, шт.

Средняя сумма операции за день, руб.

15.11.2004

2103

141,57

16.11.2004

1539

118,89

17.11.2004

1460

104,00

18.11.2004

927

122,06

19.11.2004

1069

123,51

20.11.2004

965

131,18

Итого

8063

-

Определить среднюю сумму одной операции за рабочую неделю.

Введём условные обозначения, приняв за х значения осредняемого признака (средняя сумма операции за день), f – число операций с заданным значением х.

124,56 руб. – средняя сумма оной операции за рабочую неделю.

3.1.1.3.Расчёт средней по интервальному ряду

Статистический материал в результате обработки может быть представлен не только в виде дискретных рядов распределения, но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами.

Если исходные данные заданы в виде интервального ряда, то:

1. закрывают открытые интервалы, приняв их равными ближайшим закрытым;

2. за значения осредняемого признака х берут середины интервалов и строят условный дискретный ряд распределения:

,

где - значение нижней границы интервала («от»); - значение верхней границы интервала («до»).

3. расчёт средней производится по средней арифметической взвешенной.

Например, имеются данные о распределении ОКР (операционно-кассовый работник) ГОСБ РФ №8203 по возрасту (Табл.4).

Таблица 4

Распределение ОКР ГОСБ РФ №8203 по возрасту

Группы ОКР по возрасту, лет

Число ОКР, чел

до 20 лет

9

20-30

92

30-40

134

40-50

77

старше 50 лет

43

Определить средний возраст ОКР.

Построим вспомогательную таблицу, обозначив долю ОКР через . Минимальный возраст ОКР – 18 лет, а максимальный – 60 лет. Тогда первый интервал будет от 18 до 20 лет, а последний от 50 до 60 лет. Находим середину каждого интервала и принимаем её за значение . Исчисляем значение и сумму этих значений, необходимую для расчёта средней арифметической взвешенной, заносим результаты в расчётную таблицу (Табл.5).


Страница: