Задачи Лоповок
Рефераты >> Математика >> Задачи Лоповок

75. Если суммы квадратов скрещивающихся ребер треуголь­ной пирамиды равны, то высоты пирамиды пересекаются в од­ной точке Г Докажите

.

Площадь поверхности пирамидах

76. Боковые ребра треугольной пирамиды взаимно перпен­дикулярны, их длины 2, 4, 16 см. Найдите площадь поверх­ности пирамиды.

77. Площадь основания треугольной пирамиды равна 56 см2. Боковые ребра взаимно перпендикулярны, их длины состав­ляют арифметическую прогрессию с разностью 4 см. Найдите площадь боковой поверхности пирамиды.

78. Какую наибольшую площадь поверхности может иметь треугольная пирамида, у которой 5 ребер имеют длину а?

79. Двугранный угол между смежными боковыми гра­нями правильной четырехугольной пирамиды 120°, площадь основания О. Определите площадь боковой поверхности пи­рамиды.

80. В правильной шестиугольной пирамиде площадь каж­дого диагонального сечения равна О. Найдите площадь боковой и площадь полной поверхности пирамиды.

81. Правильная пирамида и правильная призма имеют общие основание и высоту. Может ли площадь боковой поверх­ности призмы быть меньше площади боковой поверхности пира­миды? Если да,' то при каком условии?

82. Может ли площадь одной боковой грани пирамиды быть равной сумме площадей остальных боковых граней? Мо­жет ли она превысить названную сумму площадей? Подкрепите свои соображения примерами.

83. Площадь боковой поверхности правильной четырех­угольной пирамиды равна сумме площадей основания и диаго­нальных сечений. Найдите величину плоского угла при вер­шине пирамиды.

84. Из центра основания О правильной четырехугольной пирамиды, площадь поверхности которой О, проведены парал­лельно боковым ребрам пирамиды прямые ОА\, ОВ\, ОС\, ОВ\ (рис. 63). Найдите площадь поверхности пирамиды ОА1В\С\В\.

Сечение пирамиды

85. Плоский угол при вершине правильной пирамиды — прямой. Как построить сечение пирамиды плоскостью, прохо­дящей через вершину пирамиды, чтобы оно было равносторон­ним треугольником?

86. Сторона основания правильной треугольной пирамиды 20 см, боковое ребро 30 см. Постройте сечение, имеющее форму квадрата, и определите его площадь.

87. Площадь малого осевого сечения правильной четырех­угольной пирамиды О. Найдите площадь сечения, которое пер­пендикулярно стороне основания и делит эту сторону в отно­шении 1:5.

88. В правильной шестиугольной пирамиде сторона основа­ния 10 см, а боковое ребро 13 см. Найдите площадь сечения, проходящего через центр основания параллельно боковой грани.

89. Сторона основания правильной четырехугольной пира­миды МАВСО равна а, боковое ребро I. Постройте сечение через середины сторон основания АВ и ВС параллельно ребру МВ и определите площадь сечения.

90. Сторона основания правильной четырехугольной пира­миды 12 см, а боковое ребро 11 см. Найдите площадь сечения, проходящего через сторону основания перпендикулярно про­тиволежащей боковой грани.

91. Периметр основания правильной треугольной пирамиды 45 см, боковое ребро 14 см. Найдите площадь сечения, кото­рое проходит через середину медианы основания перпенди­кулярно этой медиане.

92. Через сторону основания правильной четырехугольной пирамиды и среднюю линию параллельной боковой грани про-

о ведено сечение. Докажите, что его площадь больше — площади

основания.

93. Через сторону основания правильной шестиугольной пирамиды и среднюю линию параллельной боковой грани про-

ведена плоскость. Докажите, что площадь сечения больше —

площади основания.

94. Основание пирамиды МАВСВ — ромб с диагоналями АС = 24 см, ВО == 21см. Боковое ребро МА == 18 см перпен­дикулярно плоскости основания. Найдите площадь сечения, которое проходит через вершину А и середину ребра МС па­раллельно диагонали ВО основания (рис. 64)

Параллельные сечения пирамиды

95. Построены два сечения пирамиды плоскостями, перпен­дикулярными боковому ребру. Относятся ли площади этих сечений как квадраты их расстояний от вершины пирамиды?

96. Площадь основания пирамиды 128 см2. Площади двух сечений, параллельных основанию, 18 и 50 см2, расстояние между плоскостями сечений 12 см. Найдите высоту пирамиды.

97. Боковое ребро и высота правильной четырехугольной пирамиды 35 и 28 см. В пирамиду вписан куб так, что его 4 вер­шины лежат на основании пирамиды, а 4 — на апофемах пирамиды. Найдите ребро куба.

98. Основание пирамиды — прямоугольный треугольник с катетами 3 и 4 см. Высота пирамиды Н == 24 см находится внутри пирамиды. В пирамиду вписан куб так, что 4 вершины его лежат на основании пирамиды, а 4 — на боковых гранях, причем боковые грани куба параллельны катетам основания (рис. 65). Найдите ребро куба.

Усеченная пирамида

99. Докажите, что диагонали правильной четырехугольной усеченной пирамиды пересекаются в одной точке.

100. Площади оснований усеченной пирамиды 75 и 147 см2. Найдите площадь сечения, проходящего через середины всех боковых ребер.

101. Диагональ правильной четырехугольной усеченной пи­рамиды имеет длину 15 см и делит отрезок, соединяющий центры оснований, на части в 4 и 5 см. Найдите площади осно­ваний усечённой пирамиды.

102. Отрезок 00\ = 27 см, соединяющий центры оснований правильной четырехугольной усеченной пирамиды, разделил ее диагональ на части в 20 и 25 см. Найдите площади оснований.

103. Сторона меньшего основания, боковое ребро и сторона большего основания правильной четырехугольной усеченной пирамиды составляют арифметическую прогрессию с разностью 4 см. Высота усеченной пирамиды 7 см. Найдите площади оснований.

104. В правильной шестиугольной усеченной пирамиде отре­зок, соединяющий середину малой диагонали большего осно­вания с центром другого основания, параллелен одному из боко­вых ребер. Как относятся площади оснований усеченной пирамиды?

105. В правильной треугольной усеченной пирамиде сторо­ны оснований 2 и 5 дм, высота 1 дм. Найдите площадь сечения, проходящего через сторону меньшего основания параллельно боковому ребру.

106. Стороны оснований правильной треугольной усеченной пирамиды относятся, как 1 : 3. Периметр боковой грани равен

периметру одного из оснований. Найдите угол между боковым ребром и плоскостью основания.

107. Центр каждого основания правильной треугольной усеченной пирамиды соединен с вершинами другого основания (рис. 66). Найдите длину линии, которая соединяет попарно точки пересечения построенных отрезков, если периметры осно­ваний усеченной пирамиды равны Р и Р\.

Площадь поверхности усеченной пирамиды

108. Стороны основания правильней шестиугольной усечен­ной пирамиды 5 и 11 см. Расстояние между параллельными сторонами оснований, не лежащими в одной грани, 19 см. Най­дите площадь поверхности усеченной пирамиды.

109. Сечение, проходящее через середины всех боковых ребер правильной пирамиды, разделило ее на части, площади полных поверхностей которых относятся, как 3 : 11. Определите двугранный угол при основании пирамиды.

110. Периметры оснований правильной треугольной усечен­ной пирамиды 18 и 36 см. Расстояние от вершины меньшего основания до противолежащей стороны другого основания 7 см. Найдите площадь боковой поверхности усеченной пи­рамиды.


Страница: