Задачи Лоповок
Рефераты >> Математика >> Задачи Лоповок

16. Через прямую I проходят две плоскости а и а. Две параллельные прямые пересекают эти плоскости: одна в точках А и В, другая — в точке С и еще одной, которую требуется построить.

17. Точки А, В, С, О не лежат в одной плоскости. Дока­жите, что середины шести отрезков с концами в этих точках являются серединами трех параллелограммов.

18. Точка М лежит вне плоскости правильного шести­угольника АВСОЕР. Верно ли, что прямая, проходящая через середины отрезков МВ и МС, параллельна: а) АО; б) СО?

19. По условию задачи 18 определите, каким сторонам или диагоналям шестиугольника параллельна прямая, проходящая через середины отрезков МА и МС.

20. Точка М находится вне плоскости правильного пяти­угольника АВСОЕ. Каким сторонам или диагоналям пятиуголь­ника параллельна прямая, проходящая через центры масс тре­угольников МАВ и МАЕ7

21. М и N—центры граней АВВ\А\ и ВСС\В\ куба АВСОА\В\С\0\. Каким ребрам или диагоналям граней куба параллельна прямая МН?

22. АВСОЕР — замкнутая ломаная, не все звенья которой находятся в одной плоскости. Отрезки, соединяющие середины звеньев ВС и АР, СО и ЕР равны и параллельны. Параллельны ли звенья АВ и ОЕ'!

23. АВСТ) — квадрат со стороной 6 см. Точка М удалена от каждой вершины квадрата на 7 см. Определите рас­стояние от середины отрезка МА до середин всех сторон квадрата.

24. Периметр правильного шестиугольника АВСОЕР равен Р. Точка О, находящаяся вне плоскости шестиугольника, соеди­нена отрезком с каждой его вершиной. Из центра масс треуголь­ника ОАВ проведены до пересечения в точках М), Мч, Мз, М^, Мв, Мб с плоскостью шестиугольника прямые, соответственно параллельные ОА, 0В, ОС, 00, ОЕ, ОР. Найдите периметр и площадь шестиугольника М\МчМгМ^МъМ^.

25. Три плоскости попарно пересекаются. Докажите, что линии их пересечения либо пересекаются в одной точке, либо параллельны.

26. АВСО — квадрат со стороной 6 см, прямые АМ и СТ параллельны. На них по одну сторону от квадрата отмечены такие точки М и Т, что МА : ТС ==4:3. На каких расстояниях от вершин квадрата находится точка, в которой прямая МТ пересекает плоскость квадрата?

Параллельность прямой и плоскости

27. Плоскости б и а пересекаются. Докажите, что через каж­дую точку плоскости б можно построить прямую, которая либо параллельна плоскости <т, либо принадлежит плоскости о. Является ли названная прямая единственной прямой, обла­дающей таким свойством?

28. Через точку М, не принадлежащую плоскостям а и (3, можно построить только одну прямую, параллельную этим плоскостям. Докажите, что плоскости а и |3 пересекаются.

29. Докажите, что плоскость, проходящая через середины двух медиан треугольника и пересекающая его плоскость, па­раллельна одной из его сторон.

30. Точка М находится вне плоскости параллелограмма АВСТ). Постройте линию пересечения плоскостей АВМ и СОМ. Параллельна ли она плоскости параллелограмма?

31. По условию задачи 21 докажите, что прямая МN парал­лельна плоскости: а) АВС; б) А\В\С\; в) проходящей через ребра АА\ и СС).

32. АВСОА^В\С\0\ — куб. Докажите, что ребро 00\ парал­лельно плоскости: а) АВВ\; б) ВСС\; в) проходящей через ребра АА\ и СС|; г) проходящей через середины ребер а\в{, АВ, ВС.

Параллельность плоскостей

33. Стороны двух углов соответственно параллельны. Докажите, что либо эти углы равны, либо сумма их градусных мер равна 180°.

34. Стороны параллелограммов АВСТ) и А\В\С\0\ соответ­ственно параллельны. Пересекаются ли в одной точке отрезки АС\, В0\, СА\ и ОВ\7 Если не всегда, то при каком условии они обязательно имеют общую точку?

35. На одной из параллельных плоскостей даны точки А и В, на другой — точки С и О. Середины отрезков АС и ВО не совпадают. Докажите, что прямая, проходящая через эти середины, параллельна названным плоскостям.

36. Точка М находится вне плоскости параллелограмма АВСО. Лежат ли в одной плоскости середины отрезков МА, МВ, МС, МО?

37. Через вершины правильного шестиугольника АВСВЕР проведены параллельные прямые, пересекающие его плоскость. Докажите, что плоскости, проходящий через прямые ВВ\ и РР\, СС\ и ЕЕ\, делает отрезок с концами на АА\ и ВВ \ на три части, одна из которых равна сумме двух других.

38. По условию задачи 87 определите, в каком отношении плоскости, проведенные через АА\ и СС\, АА\ и ВВ\, делят отрезок с концами на ВВ\ и ЕЕ\.

39. АВСВА\В\С\В\ — куб. Докажите, что плоскость, про­ходящая через центры граней, содержащих точку А, парал­лельна плоскости В{СВ\.

40. Три плоскости параллельны. Одна прямая пересекает их в точках А\, А а, Аз; Другая — в точках В\, Вч, В». Докажите, что А\А^ : В\В'г == А.2^.3 : В^Вз.

41. По условию задачи 40 известно, что А\Аг == 4см, В-гВз = 9 см, АчАз == В\В^ Найдите длины отрезков А\Аз

И В1Вз.

Изображение пространственных фигур

42. Две медианы треугольника АВС соответственно парал­лельны двум медианам подобного треугольника ВЕР. Парал­лельны ли третьи яедиаяы атаЕХ треугольников?

43. Изобразите правильный шестиугольник, зная, что данная плоскость делит пополам две не параллельные и не смежные его стороны.

44. Дано изображение квадрата АВСВ и точки М на стороне А.В. Постройте изображение прямой, проходящей через А пер­пендикулярно МО.

45. Дано изображение правильного шестиугольника АВСВЕР. Постройте изображение биссектрис угла: а) АСВ;

б) ВАЕ; в) между АС и ВВ; г) между АС и ВЕ.

46. Чтобы получить изображение правильного восьми­угольника, построили изображение квадрата АВСВ. Отрезки, соединяющие середины противоположных сторон, пересеклись в точке О. Каждый из отрезков, исходящий из точки О, продли­ли на -г- его длины. Полученные точки и вершины квадрата считали изображением вершин правильного восьмиугольника. Верно ли это? Если да, определите точность построения (рис. 54).

47. АВСВ — изображение квадрата. На сколько нужно продлить в обе стороны отрезки, соединяющие середины каж­дых двух соседних сторон квадрата, чтобы полученные точки и вершины квадрата оказались изображением вершин правиль­ного двенадцатиугольника?

48. Дано изображение равнобокой трапеции, в которую можно вписать окружность. Укажите на изображении точки касания сторон трапеции с вписанной окружностью.

49. Дано изображение равнобедренного прямоугольного тре­угольника. Изобразите квадрат, вписанный в этот треугольник так, что две вершины его лежат на гипотенузе, а две — на катетах.

50. Дано изображение равностороннего треугольника. Изобразите квадрат, вписанный в этот треугольник.

51. Дано изображение ромба, у которого одна диагональ равна стороне. Изобразите высоты ромба, проходящие через его центр.

52. Дано изображение прямоугольного треугольника, у ко­торого отношение катетов равно 2 : 3. Постройте изображение серединного перпендикуляра к медиане, проведенной к боль­шему катету.

53. Дано изображение квадрата АВСВ. Постройте изобра­жение равностороннего треугольника АВМ.

54. Дано изображение прямоугольника, у которого отно­шение двух сторон равно 1 : 2. Постройте изображение середин­ного перпендикуляра диагонали этого прямоугольника.


Страница: