Разработка энергосберегающей технологии ректификации циклических углеводородов
В работах [64-66] для разделения трехкомпонентных зеотропных смесей ароматических углеводородов (бензол–толуол–кумол и бензол–толуол–этилбензол) рассмотрены технологические схемы ректификации, состоящие из простых колонн и сложных колонн с боковыми отборами (рис.11).
Исследования проводились при различных составах питания и качествах продуктовых потоков. В качестве критерия оптимизации были выбраны энергозатраты на разделение.
Рис.11. Варианты схем разделения трехкомпонентной зеотропной смеси
В результате авторами было получено распределение изокритериальных многообразий в концентрационном симплексе (рис.12), а также предложены критерии применения сложных колонн с боковыми оборами:
Качество продуктовых потоков менее 99%.
Содержание легкого компонента в питании 15-25% мол. (для схемы 3).
Содержание тяжелого компонента в питании 15-25% мол. (для схмы4)
Рис.12. Расположение изоэнергетических многообразий в концентрационных симплексах исходных составов питания трехкомпонентных зеотропных смесей при качестве продуктовых потоков 99 (а), 95 (б), 90 (в), 80%мол (г). - – балансовые ограничения. Подмножества соответствуют схемам 1 – 4 рис.11
В работах [64, 67] на примере разделения двух четырехкомпонентных смесей (гексан – 2,4-диметилпентан – гептан –3-метилгептан и гексан – гептан – октан – 3,3,5-триметилгептан) исследовано распределение изоэнергетических многообразий схем трех классов: из простых двухсекционных колонн (класс П), из сложной колонны с двумя боковыми отборами (класс I), из одной простой колонны и одной сложной колонны с боковым отбором (класс Ω). Всего исследовано 18 схем при качестве продуктовых потоков 90%мол.
На основании анализа распределения областей авторами показано, что геометрия расположения изоэнергетических многообразий схем классов I и Ω примерно совпадает с геометрией изоэнергетического многообразия соответствующей схемы-прообраза класса П. Таким образом, можно говорить о том, что структура схемы множества П является наиболее общим критерием, определяющим взаимосвязь исходный состав питания – структура оптимальной технологической схемы ректификации. Изменение качества продуктовых потоков ведет лишь к изменению структуры оптимальной схемы внутри группы, заданной элементом подмножества П.
Однако все работы, посвященные определению распределения областей оптимальности, рассматривали только ректификацию зеотропных смесей.
Таким образом, представляется интересным рассмотреть возможность применения принципа приближения и термодинамической обратимости к экстрактивной ректификации, с одной стороны, и выявить области оптимальности схем экстрактивной ректификации, с другой стороны.
Постановка задачи
Целью данной работы является разработка технологии разделения азеотропной смеси циклогексан – бензол – этилбензол методом экстрактивной ректификации, обладающей минимальными энергозатратами. Для этого планируется синтезировать все возможные структуры экстрактивной ректификации смеси, состоящие из двухотборных колонн, а также схемы, содержащие сложные колонны с боковыми секциями. Затем провести параметрическую оптимизацию полученных вариантов по критерию минимальных энергозатрат. Сравнение полученных результатов позволит выявить наименее энергоемкую технологическую схему.
Другой задачей является исследование изменения структуры оптимальной технологической схемы в зависимости от состава исходного питания.
Расчетно – экспериментальная часть
Объект исследования
Объектом исследования была выбрана трехкомпонентная смесь: циклогексан - бензол – этилбензол, компоненты которой входят в состав пироконденсата, а также получаются в процессе сухой перегонки угля с целью выделения бензола. Данная смесь содержит бинарный гомогенный азеотроп с минимумом температуры кипения на стороне бензол–циклогексан. Разделение азеотропной пары производят с применением специальных методов, в частности экстрактивной ректификации. В качестве разделяющего агента предложено использовать анилин [36]. Свойства индивидуальных компонентов и данные по азеотропии представлены в таблицах 2, 3 и 4.
Табл. 2. Свойства чистых компонентов
Формула |
Ткип, ◦С |
Ткрит, ◦С |
Ркрит, кг/см2 |
ρ, кг/м3 |
Мол. масса г/моль | |
Бензол |
С6Н6 |
80,10 |
288,90 |
49,92 |
883,92 |
78,11 |
Циклогексан |
С6Н12 |
80,74 |
280,39 |
41,54 |
782,65 |
84,16 |
Этилбензол |
С8Н10 |
136, 19 |
344,00 |
36,80 |
870,96 |
106,17 |
Анилин |
C6H5NH2 |
184,35 |
425,85 |
54,14 |
1025,5 |
93,13 |
Табл. 3. Коэффициенты уравнения Антуана для описания давления паров чистых компонентов (lnP=A-B/(T+C), T–K, P–mm Hg)
А |
В |
С | |
Бензол |
15,9008 |
2788,51 |
-52,36 |
Циклогексан |
15,7527 |
2766,63 |
-50,50 |
Этилбензол |
16,0195 |
3279,47 |
-59,95 |
Анилин |
16,6748 |
3857,52 |
-73,15 |