Разработка энергосберегающей технологии ректификации циклических углеводородов
Рис.2. Принципиальная схема разделения гетероазеотропной смеси
Разделение азеотропных смесей методом экстрактивной ректификации
Экстрактивная ректификация широко применяется в промышленности как один из методов разделения неидеальных смесей. В основном она используется при разделении близкокипящих углеводородов, таких как фракции С4, С5, С6, а также при разделении азеотропных смесей, например спирт/вода, уксусная кислота/вода, ацетон/метанол, метанол/метилацетат, этанол/этилацетат, ацетон/этиловый эфир и др. [12-15].
В общем, экстрактивная ректификация является одним из случаев реализации принципа перераспределения полей концентраций, описанного в [3]. Метод экстрактивной ректификации заключается в проведении разделения с практически нелетучим разделяющим агентом (растворителем), который за счет межмолекулярного взаимодействия изменяет относительную летучесть разделяемой смеси. При этом с одной стороны, преобразуется концентрационное пространство за счет добавления одного или нескольких экстрактивных агентов, которое обладает новым фазовым портретом по сравнению с исходным. С другой стороны, за счет разновысотной подачи экстрактивного агента и исходной смеси преобразуется динамическая система ректификации [16-17]. Последнее порождает экстремумы на температурном профиле, соответствующем распределению компонентов по высоте колонны, что свидетельствует, о наличии элементов обратной ректификации [18-20]. Разновысотная подача потоков в колонну является обязательным условием реализации принципа перераспределения в данном методе.
Традиционный комплекс экстрактивной ректификации состоит из двух ректификационных колонн: экстрактивной и колонны регенерации ЭА. Такой комплекс представлен на рис.3, где первая колонна является экстрактивной, куда подается тяжелокипящий разделяющий агент, а с верха отбирается один из азеотропообразующих компонентов; продуктами второй колонны являются второй компонент азеотропной пары (дистиллат) и регенерированный экстрактивный агент (куб), который направляется на рецикл.
Рис.3. Схема экстрактивной ректификации
Разделяющие агенты, используемые в процессе экстрактивной ректификации, должны удовлетворять требованиям общего характера, важнейшими из которых являются следующие: 1) изменение относительной летучести компонентов заданной смеси в желательном направлении; 2) легкость регенерации из смесей, с компонентами системы, подвергаемой разделению; 3) безопасность в обращении, доступность и дешевизна; 4) инертность по отношению к компонентам заданной смеси, неспособность вызывать коррозию аппаратуры или разлагаться при нагревании.
Вопросы, связанные с удовлетворением требований 2–4 относятся к числу обычных технологических вопросов, решение которых определяется свойствами системы, подвергаемой разделению. Наиболее сложной задачей является выбор разделяющих агентов, удовлетворяющих первому требованию.
Все известные методы выбора разделяющих агентов [21-28] можно разделить на две группы:
- методы, основанные на данных о свойствах растворов образуемых компонентами заданной смеси и предполагаемыми разделяющими агентами (данные о равновесии между жидкостью и паром, о температурах кипения смесей, о растворимости, об азеотропии и др.);
- методы, использующие данные о свойствах компонентов (эффективный дипольный момент, диэлектрическая проницаемость, работа отключения взаимодействий, отражающая специфику взаимодействия однородных молекул, электроно-донорные и электроно-акцепторные свойства, нуклеофильность и электрофильность, факторы полярности и поляризуемости, параметры растворимости, теплоты смешения и др.).
Параметром, оценивающим изменение относительной летучести компонентов в присутствии разделяющего агента, является так называемая селективность Sij [29], отражающая отношение коэффициентов активности компонентов разделяемой пары в присутствии растворителя: .
Важным показателем процесса экстрактивной ректификации является флегмовое число, от величины которого зависит содержание примеси растворителя в целевом дистиллятном продукте. В работах [22,30-32] показана возможность проведения процесса в двухсекционных колоннах в режиме отсутствия флегмы и сформулировано правило, подтвержденное в работах [34-35]: если компоненту, выделяемому в дистиллят, в структуре фазовой диаграммы соответствует особая точка типа неустойчивый узел, то флегма влияет на качество продукта положительно. Влияние флегмы отрицательно, если продукту отвечает особая точка типа седло или устойчивый узел.
Расход разделяющего агента также является важным фактором, влияющим на процесс экстрактивной ректификации. Он определяет чистоту получаемых продуктов и энергетику всей схемы в целом. На практике экстрактивную ректификацию чаще всего проводят при расходах разделяющего агента, обеспечивающих его высокую концентрацию по высоте колонны (70-90% мол), и определяют его экспериментально [17,36,37,38]. При этом соотношение количеств растворителя и исходной смеси должно поддерживаться в интервале 2,5 – 10. Автор [39] рекомендует иной диапазон изменения кратности растворитель/исходная смесь от эквимолярного до 4/1. Считается [40], что недостаток избирательности разделяющего агента может быть компенсирован увеличением эффективности колонны. Формальное требование высокой концентрации разделяющего агента в колонне приводит в ряде случаев к его заведомо избыточному расходу и исключает этот параметр из числа оптимизационных.
Широкое распространение экстрактивной ректификации в технологической практике обусловлено рядом причин. В отличие от других специальных методов разделения экстрактивная ректификация не имеет жестких ограничений на ее применение, и ее режимы характеризуются высокой статической устойчивостью. Параметры процесса могут широко меняться в одном и том же аппарате или в ряде аппаратов. Отмечается лишь, что экстрактивная ректификация не применима при разделении смесей определенных составов, для которых коэффициенты относительной летучести слишком низки [41.] Основным преимуществом ЭР, как констатируют многие исследователи [16,30], является низкая энергоемкость.
Синтез схем разделения многокомпонентных смесей
Синтез множества ТСР, состоящих из простых двухсекционных колонн
Ввиду сложности подсистемы разделения, включающей большое число различных методов и аппаратов, синтез оптимальных технологических схем разделения является одной из важных задач химической технологии. Значительная энергоемкость процессов разделения (до 70% от суммарных энергозатрат на производство) заставляет обращать больше внимания не только на параметрическую оптимизацию уже существующих установок, но и задумываться о структурно оптимальных схемах разделения.
На сегодняшний день важной проблемой остается разработка методов синтеза технологических схем для разделения многокомпонентных азеотропных смесей. К сожалению, большинство существующих методик не визуализированы и подходят для смесей с большим числом компонентов лишь теоретически.