Кинетика химических и электрохимических процессов
При условии, что в момент времени t = 0 [B]0 = 0:
.(6.7)
Для мономолекулярных параллельных реакций типа
С ¬ А ® В дифференциальные формы кинетического уравнения:
;(6.8)
.(6.9)
Интегральные формы кинетического уравнения:
; (6.10)
, (6.11)
где k1 и k2 – константы скорости первой и второй реакций. Константы скоростей отдельных стадий для реакций данного типа определяют по соотношению:
х1/х2 = k1/k2, (6.12)
где х1 и х2 – количества молей веществ В и С, образовавшихся к моменту времени t или приращение концентраций веществ В и С. Текущая концентрация исходного вещества имеет вид
[А] = [А]0 – х. (6.12а)
Для мономолекулярных последовательных реакций типа
дифференциальные формы кинетического уравнения:
; (6.13)
; (6.14)
; (6.15)
; (6.16)
. (6.17)
Интегральные формы кинетического уравнения:
; (6.18)
; (6.19)
; (6.20)
; (6.21)
; (6.22)
[C] = [А]0 - [А] - [B], (6.23)
где [А], [В], [С] – текущие концентрации веществ А, В, С; [А]0 – концентрация вещества А при t = 0; k1 и k2 – константы скорости первой и второй реакций: [А] = [А]0 – х; [В] = x – y; [C] = y.
Точка максимума на кривой [В] = f(t) характеризуется уравнениями
; (6.24)
; (6.25)
, (6.26)
где tmax – время соответствующее максимальной концентрации вещества В.
6.2 Задачи с решениями
1. Для обратимой реакции первого порядка
Кр = 8, а k1 = 0,4 c-1. Вычислите время, при котором концентрации веществ А и В станут равными, если начальная концентрация вещества В равна 0.
Решение. Из константы равновесия находим константу скорости обратной реакции: k-1 = k1/К = 0,4/8 = 0,05 с-1. По условию мы должны найти время, за которое прореагирует ровно половина вещества А. Для этого надо подставить значение х(t) = а/2 в решение кинетического уравнения для обратимых реакций:
t.
Ответ: t = 1,84 с.
2.В параллельных реакциях первого порядка С ¬ А ® В выход вещества В равен 63%, а время превращения а на 1/3 равно 7 мин. Найдите k1 и k2.
Решение. Кинетическое уравнение для разложения вещества в параллельных реакциях имеет вид уравнения первого порядка, в которое вместо одной константы входит сумма констант скорости отдельных стадий. Следовательно, по аналогии с реакциями первого порядка, по времени превращения А на 1/3 (х(t) = a/3) можно определить сумму констант k1 + k2:
мин-1.
Выход вещества В равен 63%, а вещества D – 37%. Отношение этих выходов равно отношению конечных концентраций веществ В и D, следовательно оно равно отношению соответствующих констант скоростей
. Решая это уравнение совместно с предыдущим, находим: k1 = 0,037, k2 = 0,021.
Ответ: k1 = 0,037 мин-1, k2 = 0,021 мин-1.
3.В системе протекают две параллельные реакции А + 2В→ → продукты (k1) и A +2C → продукты (k2). Отношение k1/ k2 = 5. Начальные концентрации веществ В и С одинаковы. К моменту времени t прореагировало 50% вещества В. Какая часть вещества С прореагировала к этому моменту?
Решение. Запишем кинетические уравнения для первой и второй реакций: . Поделив одно кинетическое уравнение на другое, избавимся от временной зависимости и получим дифференциальное уравнение, описывающее фазовый портрет системы, т. е. зависимость концентрации одного из веществ от концентрации другого: с начальным условием [В]0 = [С]0. Это уравнение решается методом разделения переменных: , где константа находится из начального условия . Подставляя в это решение [В] = [В]0/2, находим [С] = 5[В]/6 = 5[С]0/6, т.е. к моменту времени t прореагирует 1/6 вещества С.
4.Реакция разложения изопропилового спирта протекает в присутствии катализатора триоксида ванадия при 588 К с образованием ацетона, пропилена и пропана. Концентрации веществ реакции, измеренные через 4,3 с после начала опыта, следующие, ммоль: с; с; с. Определите константу скорости каждой реакции, если в начальный момент в системе присутствовал только С3Н7ОН.
Решение: Определим начальное количество С3Н7ОН: [А]0 = с1 + с2 + с3 + с4 = 24,7 + 7,5 + 8,1 + 1,7 = 44,7 ммоль/л. Вычислим сумму констант скоростей реакций:
, c-1.
Определим константу скорости каждой реакции:
; ; ;
Так как х2/х3 = k2/k3, то ;
;