Кинетика химических и электрохимических процессов
Рефераты >> Химия >> Кинетика химических и электрохимических процессов

1. Электрическая проводимость. Равновесие в растворах электролитов

1.1 Необходимые исходные сведения и основные уравнения

Электролитом называется вещество, которое привзаимодействии с водой способно распадаться на ионы и тем самым переносить электрический заряд. По способу переноса электрического заряда все проводники делятся на два рода. К проводникам первого рода относятся проводники с электронной проводимостью (все металлы, углерод, графит, некоторые неметаллы). К проводникам второго рода относятся проводники с ионной проводимостью (растворы кислот, большинства солей и оснований, а также их расплавы).

Важнейшей характеристикой электрической проводимости является электрическое сопротивление проводников:

R = r∙l/s,(1.1)

где r - удельное электрическое сопротивление, Ом.м; l – длина проводника первого рода или расстояние между электродами в проводнике второго рода, м; s – площадь поперечного сечения проводника первого рода или площадь электродов проводника второго рода, м2.

Величина, обратная сопротивлению, называется электрической проводимостью:

1/r = c,(1.2)

где c - удельная электрическая проводимость, Ом-1.м-1. Удельной электрической проводимостью называется электрическая проводимость электролита, заключенного между электродами площадью 1 м2 и расположенными на расстоянии 1 м друг от друга.

Для растворов электролитов часто пользуются понятием «эквивалентная электрическая проводимость» l:

l = c/с (1.3)

где с – эквивалентная концентрация электролита, моль.м-3. Эквивалентной электрической проводимостью называется электрическая проводимость электролита, заключенного между электродами, находящимися на расстоянии 1 м друг от друга и такой площади, что в пространстве между ними содержится 1 моль электролита.

Зависимость эквивалентной электрической проводимости от концентрации описывается уравнением Кольрауша:

l = l¥ - А,(1.4)

где l¥ - эквивалентная электрическая проводимость при бесконечном разбавлении, Ом-1.моль-1.м2; А – постоянная, зависящая от природы электролита.

Так как проводник второго рода при растворении в воде распадается на два типа ионов, то электрический заряд переносится совместно катионами и анионами и справедливо уравнение Кольрауша (закон независимости движения ионов):

l¥ = l+ + l-,(1.5)

где l+ и l- - электрические проводимости соответственно катиона и аниона, Ом-1.моль-1.м2. Электрическая проводимость катиона и аниона в большей степени определяется скоростью их движения:

u+ = u+0U/l и v- = v-0U/l,(1.6)

где u+0 и v-0 – абсолютные скорости движения ионов, м2.с-1.В-1; U/l – напряженность электрического поля, В.м-1,

l+ = F.v+0 и l- = F.v-0,(1.7)

где F – число Фарадея (F = 96500 Кл).

Абсолютные скорости движения ионов различны. Так как в проводниках второго рода электрический заряд переносится од-новременно катионами и анионами, то

Q = Q+ + Q-и I = I+ + I- (1.8)

где Q – перенесенный заряд, Кл; Q+ и Q- - заряд, перенесенный катионами и анионами, Кл; I, I-, I+ - общая сила тока и сила тока, определяемая движением анионов и катионов, А.

Количество заряда, перенесенного ионами, зависит от скорости движения (подвижности), заряда и размера ионов, а также от некоторых других факторов. В большинстве случаев доли зарядов, перенесенных разными видами ионов, не совпадают друг с другом. По этой причине вводится понятие о числах переноса ионов (t+ и t-). Числом переноса ионов называется доля заряда, перенесенного данным видом иона:

t+ = Q+/(Q+ + Q-) = I+/(I+ + I-); (1.9)

t- = Q-/(Q+ + Q-) = I-/(I+ + I-). (1.10)

Очевидно, что t+ + t- = 1. Отсюда:

t+ = 1 – t- и t- = 1 – t+. (1.11)

Числа переноса можно выражать через скорости движения и подвижности ионов:

t+ = v+0/(v+0 + v-0) = λ+/(λ+ + λ-) = λ+/λ∞;

t- = v-0/(v+0 + v-0) = λ-/(λ+ + λ-) = λ-/λ∞. (1.12)

Так как в ходе переноса заряда ионы разряжаются на электродах, то концентрации электролита в анодном, катодном и среднем пространствах различны:

t+ = Δск/Δс иt- = Δса/Δс (1.13)

где Dск и Dса– изменение концентрации электролита в катодном и анодном пространствах; Dс – общая убыль концентрации элек-тролита (изменение концентрации в среднем пространстве).

Количественно степень распада электролита на ионы выра-жается через a (степень диссоциации):

a = np/n, (1.14)

где np – количество молекул, распавшихся на ионы; n – общее количество молекул электролита, введенных в раствор. По значению a различают сильные и слабые электролиты (a > 0,85 и 0,25 > a > 0,85 соответственно).

При диссоциации слабого электролита, распадающегося на одновалентные ионы по схеме: АВ ↔ А+ + В-, константа диссоциации:

Кд = [А+].[В-]/[АВ], (1.15)

где символы в квадратных скобках указывают на концентрации соответствующих веществ. Если степень диссоциации

a = [А+]/с = [В-]/с = λ/λ∞, (1.16)

то Кд = a2.с, или a = . (1.17)

Соотношение (1.17) называется законом разведения Оствальда (в простейшей форме). После подстановки (1.16) в (1.17) закон разведения Оствальда примет вид

Кд = λ2. с/[(λ∞.(λ∞ - λ)]. (1.18)

Зависимость константы диссоциации от температуры описывается уравнением

lg (К) = -ΔНдисс(1/Т2 – 1/Т1)/(2,3.R), (1.19)

где DНдисс– теплота диссоциации, Дж.моль-1.

Работу диссоциации можно определить по уравнению изотермы Вант-Гоффа:

w = -DG0 = RTlnKи w = -DG0 = 2,3RTlgK, (1.20)

где DG0 – стандартное изменение энергии Гиббса (изобарно-изотермического потенциала) при диссоциации, кДж.моль-1.

Необходимо учесть, что для сильных электролитов в приведенные выше уравнения вместо концентрации необходимо подставлять активности, которые связаны с концентрациями через коэффициент активности:

а = g.c, (1.21)

где а – активность сильного электролита, моль.м-3; g - коэффициент активности сильного электролита при данной концентрации, с – молярная концентрация сильного электролита, моль.м-3;

Активностью сильного электролита называется активная часть этого вещества в растворе. Коэффициенты активностей для большинства веществ известны и приведены в справочнике (например, в [8]). Активность электролитов чаще всего выражают через моляльность m и средние ионные коэффициенты активности γ±.

Таблица 1 - Соотношения между моляльностью m, средней ионной моляльностью m±, активностью а и средним ионным коэффициентом активности γ± для некоторых электролитов

Тип валентности электролита

Пример

а = =(m±∙γ±)ν

а± =

= ν

1-1, 2-2, 3-3

KCl (1-1); ZnSO4 (2-2);

AlPO4 (3-3)

m2g±2

mg±

2-1, 1-2

CaCl2 (2-1); Na2SO4 (1-2)

4m3g±3

3 mg±

3-1, 1-3

AlCl3 (3-1), Na3PO4 (1-3)

27m4g±4

4 mg±

3-2, 2-3

Al(SO4)3 (3-2); Fe3(PO4)2 (2-3)

108m5g±5

5mg±


Страница: