Изучение и анализ производства медного купороса
К отходам производства меди относятся: ватержакетная пыль, шлаки, рудничные отвалы и др. Эти материалы содержат, как и колчеданные огарки, различные соединения меди и перерабатываются аналогичными методами – непосредственным выщелачиванием или выщелачиванием после сульфатизирующего или хлорирующего обжига. Полученные растворы подвергают цементации. При наличии отбросного тепла их можно выпаривать для кристаллизации из них медного купороса.
Водное выщелачивание ватержакетной пыли при 75 – 800С позволяет извлечь из нее в течение 4 ч от 20 до 70 % меди в раствор в виде сульфата меди. При последующей обработке остатков от выщелачивания водой в течение 4 ч 4 %-ной серной кислотой в раствор переходит еще 15 – 30 % меди.
Выщелачиванием шлаков 5 %-ной серной кислотой при 90 – 950С и Т: Ж, равном 1: 1, и 6000С в течение 1 ч можно увеличить извлечение меди в раствор до 80 %.
В рудничных отвалах обычно содержится 1 – 2 % меди. Она может быть извлечена в раствор теми же методами, как и из других отходов, а также обработкой водной пульпы сернистым газом. Степень извлечения меди достигает при этом 98 % в течение 1 ч, если предварительно произвести хлорирующий обжиг материала при 3000С, с добавкой к нему 20 % NaCl.
Выделение меди из разбавленных растворов
При извлечении меди из колчеданных огарков, отходов медеплавильных заводов, рудничных отвалов, а также из окисленных медных руд получаются разбавленные растворы медного купороса (или хлорной меди). Рудничные воды, образующиеся на медных рудниках в результате медленного окисления сернистой меди кислородом воздуха, также представляют собой слабый раствор медного купороса. Так как концентрирование таких слабых растворов не экономично, медь выделяют из них цементацией. Этот процесс заключается в вытеснении меди из растворов железными стружками и железным ломом:
Cu2+ + Fe = Fe2+ + Cu (42)
Электродный потенциал меди значительно выше, чем железа в маточных растворах, содержащих ионы Cu2+ или Fe2+, при обычной температуре и давлении водорода 1 ат он равен для Cu + 0,34 в, для Fe – 0,44 в. Поэтому железо вытесняет медь из раствора в виде тонкого металлического шлама, называемого цементной медью.
Цементацию осуществляют в стальном футерованном или освинцованном баке, куда загружают очищенный от грязи и ржавчины железный лом. Затем в бак подают разбавленный раствор сульфата меди. Для полноты осаждения меди раствор не должен содержать значительных количеств серной кислоты.
Оптимальная концентрация серной кислоты равна ~ 0,05 % или около 5 ∙ 10-5 г-ионов/л.
Образующийся в результате цементации разбавленный раствор сульфата железа спускают в канализацию, а в реактор заливают другую порцию исходного раствора, содержащего медь. Обработку одной и той же загрузки железа проводят 10 – 12 раз. После этого оставшееся железо удаляют и выгружают осевшую на дно цементную медь, которую затем промывают от частиц железа 10 – 15 %-ной серной кислотой при непрерывном перемешивании. По удалению железа медь промывают водой до полной отмывки от серной кислоты. Промытая цементная медь получается в виде пасты красновато-бурого цвета; она содержит 65 – 70 % Cu, до 35 % влаги и около 1 % примесей и перерабатывается в медный купорос теми же методами, что и медный лом. Дисперсность цементной меди возрастает с увеличением pH раствора и при уменьшении концентрации в нем CuSO4 и Cl- Цементацию меди можно осуществлять и в псевдоожиженном слое железных гранул. Разработан способ извлечения цементной меди флотацией. Порошкообразную медь можно получить из кислых растворов солей меди, добавляя к ним растворимые в воде полисахариды (~1 %) и обрабатывая газообразным восстановителем под давлением, например, водородом при 30 ат и 1400С.
Медь может быть извлечена из разбавленных растворов CuSO4 обработкой их слабой аммиачной водой. При этом образуется осадок Cu(OH)2 ∙ Cu SO4, который после отделения от раствора можно растворить на фильтре серной кислотой для получения медного купороса. Если в растворе присутствуют, кроме меди, ионы железа и никеля (например, при переработке полиметаллических руд), возможно ступенчатое осаждение их аммиаком при нейтрализации раствора последовательно до pH = 3, а затем 4,5 и 6.
1.5 Получение медного купороса из электролитных растворов медеэлектролитных заводов
При электролитическом рафинировании меди применяют электролит, содержащий в 1 л 30 – 45 г. меди в виде сульфата и около 200 г. свободной серной кислоты. Помимо этого, в электролите присутствуют примеси NiSO4, FeSO4, As2O3, ZnSO4, CaSO4 и др. В связи с накоплением этих примесей и переходом в раствор меди часть электролита должна выводиться из процесса. Наиболее экономичным способом утилизации выводимого из цикла электролитного раствора является переработка его на медный купорос, так как стоимость последнего выше, чем стоимость затраченных на его производство меди и серной кислоты.
Поэтому находящуюся в выделенном электролите серную кислоту нейтрализуют материалами, содержащими медь, катодным скрапом, стружкой, гранулированной катодной и анодной медью, шлаком анодных печей и т. п. Нейтрализацию производят при циркуляции раствора через слой материала, содержащего медь, загруженного в резервуары, называемые окислителями. В них вдувают воздух, требующийся для окисления меди в процессе ее растворения в серной кислоте. Здесь происходит тот же процесс, что и описанный выше, идущий в натравочных башнях. Температуру раствора поддерживают около 70 – 800С нагреванием через паровые змеевики или острым паром. После снижения содержания свободной серной кислоты в растворе до 0,5 %, для чего обычно требуется от 12 до 24 часов, раствор поступает на выпаривание, причем из него частично выделяются соли железа и кальция. Затем раствор охлаждается в кристаллизаторах, где из него выделяются кристаллы медного купороса. Из оставшегося маточного раствора извлекают никелевый купорос, загрязненный сульфатом меди.
Содержащиеся в меди примеси при рафинировании переходят в шлам, в котором находятся значительные количества меди. Извлечение меди из шлама производят выщелачиванием серной кислотой при 850С с продувкой воздухом. Несмотря на длительность этой операции (до 18 ч), в шламе остается 8 – 10 % меди. Для ускорения этого процесса предложено применять в качестве интенсивного окислителя меди персульфат аммония [2].
Рассмотрев технологии различных способов получения медного купороса можно отметить, что, как и у любого процесса получения есть свои плюсы и минусы.
Так, например, недостатком способа получения медного купороса сульфатизирующим обжигом белого матта является то, что основное количество серы, содержащейся в белом матте, не используется. Хотя за счет этой серы возможно было бы перевести 50 % меди, находящейся в белом матте и, тем самым снизить в 2 раза расход серной кислоты. Но этот метод хорош тем, что при длительной прокалке при невысоких температурах и при избытке кислорода, для обработки продукта обжига – белого матта расходуется в 1,5 раза меньше серной кислоты, чем при простом окислительном обжиге. Однако обеспечение достаточно высокой концентрации кислорода в газовой фазе и предварительное измельчение материала требует либо значительных затрат энергии, либо рабочей силы, либо длительного периода времени, что в свою очередь ведет к удорожанию процесса.