Изучение и анализ производства медного купороса
Рефераты >> Химия >> Изучение и анализ производства медного купороса

Известна конструкция натравочной башни (Вассерман И.М. Производство минеральных солей. Л.: Госхимиздат, 1962, с. 167 – 169), содержащая корпус, турбинку для орошения, инжектор, патрубок для выпуска раствора, ложное днище.

Недостатком этой конструкции является низкая производительность, отсутствие возможности использования порошкообразных материалов, низкий коэффициент использования кислорода воздуха, как следствие, высокий удельный расход энергоносителей при эксплуатации (пар, воздух), большой выход непрореагированного твердого осадка.

Наиболее близким изобретением по технической сущности и достигаемому результату является устройство для растворения твердых и жидких частиц (Патент РФ № 2048870, МПК6 В 01 F 1/100), которое принято в качестве прототипа. Устройство представляет собой корпус, днище которого выполнено в виде конусообразной винтовой поверхности с вершиной по оси корпуса, снабженный каплеуловителем, расположенным под крышкой корпуса и выполненным из жалюзи переменного диаметра, улиткой, размещенной над корпусом, при этом патрубок подачи газа расположен на верхнем срезе днища, подача газовоздушной смеси и ее удаление осуществляется одним вентилятором.

Однако и это известное техническое решение не может быть использовано для осушествления поставленной задачи – интенсификации процесса, снижения эксплуатационных затрат, повышения извлечения металла в раствор и готовую продукцию, автоматизации технологического процесса.

Недостатки данного устройства:

– невозможность растворения твердого гранулированного материала;

– отсутствие подогрева раствора;

– невозможность поддержания определенной температуры процесса;

– малый объем реакционной зоны;

– низкая производительность.

Анализ описанных выше аналога и прототипа выявил, что ни в одном из них не достигается желаемый результат – создание устройства, позволяющего интенсифицировать процесс растворения металлической меди, снизить эксплуатационные затраты, повысить извлечение металла в раствор и готовую продукцию.

В дипломном проекте предлагаю ввести разработанную и запатентованную конструкцию аппарата для растворения металлической меди в сернокислых растворах с достижением указанного технического результата [9].

Предлагаемый аппарат, как и конструкция-прототип, содержит цилиндрический корпус, выносную циркуляционную трубу, патрубки ввода и вывода раствора.

Устройство аппарата для растворения металлической меди отличается от устройства – прототипа тем, что оно снабжено в нижней части корпуса камерой смешения циркулирующего раствора со сжатым воздухом, определенной от реакционной зоны перфорированной перегородкой; реакционной зоной, соединенной через коническую царгу с пеногасителем, который имеет отстойную зону, образованную цилиндрическим защитным экраном и корпусом аппарата, газоотводящие трубки и диаметрально расположенные для отвода осветленного раствора сливные патрубки, входящие через сливной коллектор в циркуляционную трубу.

Аппарат колонного типа предназначен для получения насыщенного раствора сернокислой меди. Процесс получения насыщенного раствора заключается в нейтрализации свободной серной кислоты, содержащейся в отработанных электролитах. Нейтрализация идет при многократном прохождении по нейтрализационной колонне подогретого электролита смешанного с воздухом через толщу медных гранул снизу вверх. При этом происходит растворение медных гранул и насыщение раствора сернокислой медью.

Аппарат колонного типа изготовлен из нержавеющей стали 12Х18Н10Т и представляет собой колонну (верхняя часть – диаметр 2380 мм, высота 3000 мм, нижняя часть – диаметр 1280 мм, высота 4300 мм, соединенные конической обечайкой). Рабочий объем – 12 м3.

В состав установки входят: нетрализационная колонна и циркуляционная система.

Техническая характеристика.

– Концентрация серной кислоты в электролитах:

начальная 140 – 160г/л

конечная 3 – 6 г/л

– Скорость циркуляции 25 – 30 нм3/час;

– Расход сжатого воздуха 150 – 170 нм3/час;

– Рабочая емкость нейтрализационной колонны 12м3;

- Количество загружаемых медных гранул (максимум) 10,2т (ρ=1,7 т/м3);

– Количество исходного раствора 11т (ρ=1,2т/м3);

– Вес нейтрализационной колонны в рабочем режиме 25,7 т;

– Мощность привода насоса циркуляционной системы 4 кВт;

– Материал основных элементов установки. 12Х18Н10Т

Общий вид устройства показан на рис. 3.

Аппарат состоит из цилиндрического вертикального корпуса 1 в нижней части которого расположена камера смешения 2 сжатого воздуха с циркулирующим раствором. Подача сжатого воздуха осуществляется через патрубок 3 соосно потоку циркулирующего раствора и через патрубок 4 под перфорированную перегородку 5, отделяющую камеру смешения от реакционной зоны 6, которая через коническую царгу подсоединена к пеногасителю 7. Пеногаситель представляет собой расширенную цилиндрическую часть аппарата, соотношение диаметра которого к диаметру реакционной зоны составляет (2,94 – 2,98): 1. В пеногасителе расположен теплообменник в виде змеевика для подогрева раствора и обеспечения оптимальной температуры процесса с вводом пара через патрубок 11 и выводом конденсата через патрубок 26. В этой же части аппарата расположены: отстойная зона 9, образованная цилиндрическим защитным экраном 10 и корпусом аппарата 1; газоотводящие патрубки 12; для отвода осветленного раствора – диаметрально расположенные сливные патрубки 13, входящие через сливной коллектор 14 в циркуляционную трубу 15.

Описанное выше устройство работает следующим образом.

Медь в виде гранул или порошка загружают через верхний загрузочный люк 16, затем аппарат заполняют сернокислым раствором до рабочего уровня через патрубок 17. В подогреватель – змеевик 8 подается пар для обеспечения заданной температуры процесса растворения. Через патрубки 3, 4 подается сжатый воздух. Запускается циркуляционный насос 18 для создания циркуляции раствора через слой твердого растворяемого вещества. Рабочая жидкость подается в донную часть аппарата 25 циркуляционным насосом 18 через вентили 21, 22, 24 либо, минуя насос, через вентиль 23. Затем поступает в камеру смешения 2 со сжатым воздухом и за счет подъемной силы сжатого воздуха выбрасывается в реакционную зону 6, где идет основная реакция твердофазного взаимодействия – газ – жидкость – твердое. Далее раствор поднимается в расширенную часть колонны – пеногаситель 7, где гасится образующаяся на поверхности раствора пена. Попадая в отстойную зону 9, раствор осветляется от твердых частиц и через сливной патрубок 13 и сливной коллектор 14 поступает в циркуляционную трубу 15.

По истечении определенного времени, готовый раствор анализируют и выдают из системы циркуляции через ловушку 19 и вентиль 20 на дальнейшую переработку.

В нижней части имеется люк для чистки аппарата и осмотра элементов опорной решетки.

Оборудование установки обвязано технологическими трубопроводами, подающими и отводящими раствор, пар, конденсат, сжатый воздух. Установка оснащена запорной регулирующей арматурой, приборами КИП и А.


Страница: