Геоинформационные системы (гис) и систематическое использование беспилотного летательного аппарата на землях с.-х. назначенияРефераты >> Технология >> Геоинформационные системы (гис) и систематическое использование беспилотного летательного аппарата на землях с.-х. назначения
Условность подразделы дешіфріровочних признаков на прямые и косвенные побуждала некоторых исследователей или вообще отказаться от мелких классификаций, или вести классификацию другим способом.
Э.Баррет и А.Куртіс считают, что независимо от изображения и переданной им информации, для дешифровки объекта достаточно 9 признаков:
1.Форма. Объекты поля, растений можно довольно уверенно распознать по их контурам или форме. Это справедливо как для естественных, так и антропогенных объектов.
2.Размери. Во многих случаях важно учитывать длину, ширину, высоту, площадь или объем изображенных объектов. Часто о приблизительном масштабе их на снимке судят, сравнивая их с эталонными элементами местности (например, размер машины, дождевальной установки).
3.Фототон - степень почернения изображения на снимке. Нормальное зрение различает 32-35 оттенков от белого до черного цвета. На фототон влияют отбивная способность объекта, его цвет, освещенность, структура поверхности и др
4.Тень. По теневому силуэту можно определить форму объекта. Глубокие тени на снимках мешают дешифровки - например, затушевывают слоистость, складчатость и т.д. В то же время повышения плотности фототон говорит в данном случае о расчлененности рельефа.
5.Учет. На снимках часто оказываются объекты восточного вида (микрорельеф поля. Это обстоятельство во многом облегчает дешифровка, особенно при анализе и картировании сложных геологических образований (метод сходства).
6.Текстура - важная качественная характеристика фотоизображения тесно связанная с фототон и разрешает выделить участка изображения с одинаковым рисунком, обусловленных объединением микротоновых отличий. К числу распространенных текстур можно отнести тучные, волнистые, пятнистые, линейные и др Текстура применяется в совокупности с другими признаками. Например, снимки разных грунтов могут иметь одинаковый фототон, но разную текстуру.
7.Расположение. На заключительных этапах дешифровки интерпретацию и классификацию ряда объектов можно уточнить по их местоположению относительно других, уже расшифрованных объектов. Например соцветию долголетних трав на поле, куртины деревьев в лесе и т.д.
8. Раздельная способность снимку на местности. Раздельная способность снимка зависит от особенностей аппаратур (АФА), с помощью которой он получен, от состояния окружающей среды во время наблюдения и от следующей обработки полученной информации. Раздельная способность лимитирует размер объектов, которые могут быть узнаны.
9.Стереоеффект. Стереоскопический модель изображения дает информацию, которую невозможно получить из отдельного снимка.
Кроме приведенных выше "основоположных" признаков, в практике работ по дешифровке весьма эффективные и другие, как это рельеф, растительность, степень увлажнения поверхности и т.д.
Геоморфологические признаки. Прочность пород и стойкость их к процессам выветривания сыграют значительную роль при формировании макро-и микроформ рельефа. Большое значение имеют трещиноватость пород, которая определяет характер и густоту речной и яружно-балочної сети.
Растительность. Древесная, кустарниковая и травянистая растительность часто располагается выборочно на грунтах разного состава.
Характерным признаком растительности и ее состояния есть спектральная отбивная способность, которая характеризуется большими отличиями в отображении излучения разных длин волн. Знание о связи структуры и состояния растительности с ее спектрально-отбивными способностями разрешают использовать аэрокосмические снимки для картографирования и идентификации типов растительности и грунтов.
Для работы со спектральной информацией часто прибегают к созданию так называемых "индексных" изображений. На основе комбинации значений яркости в определенных каналах, информативных для выделения исследуемого объекта, и расчета по этим значением "спектрального индекса" объекта строится изображение, соответствующее значению индекса в каждом пикселе, что и разрешает выделить исследуемый объект или оценить его состояние. Спектральные индексы, используемые для изучения и оценки состояния растительности, получили общепринятое название вегетационных индексов.
Аппаратуры наблюдения на носителях (ДПЛА), на базе которых проводят съемку, как правило, бывает трех типов: фотографическая, оптико-электронная и радиолокационная. Понятно, что для того, чтобы она была чувствительна в том участке электромагнитного спектра, в котором ведется сбор данных, она должна иметь соответствующую оптику (зеркальную или линзовую), приемочные устройства для видимой и инфракрасной области спектру и антенну СВЧ диапазона, который разрешает озарять объекты радиоволнами и принимать отраженные радиолокационные сигналы.
На ДПЛА установлена линзовая оптика (АФА), который разрешает проводить съемку в видимой части электромагнитных волн (см. табл.1) используя цветную модель RGB.
Таблица 1.1 - Диапазоны волн видимой части электромагнитного спектру
Цвет |
Диапазон волн, нм |
Диапазон частот, ТГЦ |
Диапазон энергии фотонов, ев |
Фиолетовый |
380—440 |
790—680 |
2,82—3,26 |
Синий |
440—485 |
680—620 |
2,56—2,82 |
Голубой |
485—500 |
620—600 |
2,48—2,56 |
Зеленый |
500—565 |
600—530 |
2,19—2,48 |
Желтый |
565—590 |
530—510 |
2,10—2,19 |
Померанцевый |
590—625 |
510—480 |
1,98—2,10 |
Красный |
625—740 |
480—400 |
1,68—1,98 |
Более наглядно расположение диапазона волн в электромагнитном спектре можно увидеть на рисунке 1.1
Рисунок 1.1 - Видимый диапазон электромагнитного спектру
Анализ полученных данных с АФА в виде АЗ разрешает оперативно с большой судьбой репрезентативности устанавливать состояние сельскохозяйственных культур и грунтовых контуров.